【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按/次收費,并注冊成為會員,對會員逐次消費給予相應(yīng)優(yōu)惠,標準如下:

消費次第

收費比率

該公司注冊的會員中沒有消費超過次的,從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如下:

消費次數(shù)

人數(shù)

假設(shè)汽車美容一次,公司成本為元,根據(jù)所給數(shù)據(jù),解答下列問題:

1)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;

2)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,設(shè)該公司為一位會員服務(wù)的平均利潤為元,求的分布列和數(shù)學期望.

【答案】1元(2)答案見解析

【解析】

1)第一次消費為元,利潤為元, 第二次消費元,利潤為元,即可求得答案;

2)因為/次收費,公司成本為元,設(shè)該公司為一位會員服務(wù)的平均利潤為元,根據(jù)頻率計算公式求出頻率,即可求得的分布列和數(shù)學期望,即可求得答案.

1 第一次消費為元,利潤為元;

第二次消費元,利潤為元;

兩次消費的平均利潤為.

2 /次收費,公司成本為元,

消費次平均利潤為

消費次平均利潤為

消費次平均利潤為

消費次平均利潤為

消費次平均利潤為

若該會員消費次,則,;

若該會員消費次,則,;

若該會員消費次,則,;

若該會員消費次,則,;

若該會員消費次,則,.

的分布列為:

的期望為().

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為4,點P(2,3)在橢圓上.

(1)求橢圓C的方程;

(2)過點P引圓的兩條切線PA,PB,切線PAPB與橢圓C的另一個交點分別為A,B試問直線AB的斜率是否為定值?若是,求出其定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,若直線是函數(shù)的圖象的切線,求的最小值;

(2)設(shè)函數(shù),若上存在極值,求的取值范圍,并判斷極值的正負.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務(wù),每件產(chǎn)品由3A 型零件和1B 型零件配套組成.每個工人每小時能加工5A 型零件或者3B 型零件,現(xiàn)在把這些工人分成兩組同時工作(分組后人數(shù)不再進行調(diào)整),每組加工同一中型號的零件.設(shè)加工A 型零件的工人人數(shù)為x名(x∈N*

1)設(shè)完成A 型零件加工所需時間為小時,寫出的解析式;

2)為了在最短時間內(nèi)完成全部生產(chǎn)任務(wù),x應(yīng)取何值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果函數(shù)滿足是它的零點,則函數(shù)有趣的,例如就是有趣的,已知有趣的”.

1)求出b、c并求出函數(shù)的單調(diào)區(qū)間;

2)若對于任意正數(shù)x,都有恒成立,求參數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)為橢圓的下頂點,橢圓長半軸的長等于橢圓的短軸長,且橢圓經(jīng)過點.

1)求橢圓的方程;

2)過點的直線與直線交于點,與橢圓交于,點關(guān)于原點的對稱點為,直線交直線交于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】手機支付也稱為移動支付,是指允許用戶使用其移動終端(通常是手機)對所消費的商品或服務(wù)進行賬務(wù)支付的一種服務(wù)方式.隨著信息技術(shù)的發(fā)展,手機支付越來越成為人們喜歡的支付方式.某機構(gòu)對某地區(qū)年齡在1575歲的人群是否使用手機支付的情況進行了調(diào)查,隨機抽取了100人,其年齡頻率分布表和使用手機支付的人數(shù)如下所示:(年齡單位:歲)

年齡段

[1525

[25,35

[35,45

[45,55

[5565

[65,75]

頻率

0.1

0.32

0.28

0.22

0.05

0.03

使用人數(shù)

8

28

24

12

2

1

1)若以45歲為分界點,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.001的前提下認為使用手機支付與年齡有關(guān)?

年齡低于45

年齡不低于45

使用手機支付

不使用手機支付

2)若從年齡在[55,65),[65,75]的樣本中各隨機選取2人進行座談,記選中的4人中使用手機支付的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望.

參考數(shù)據(jù):

PK2k0

0.025

0.010

0.005

0.001

k0

3.841

6.635

7.879

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點P,Q分別為A1B1,BC的中點.

(1)求異面直線BPAC1所成角的余弦值;

(2)求直線CC1與平面AQC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.(其中實數(shù)).

1)分別求出p,q中關(guān)于x的不等式的解集MN;

2)若pq的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案