【題目】設(shè)為橢圓:的下頂點,橢圓長半軸的長等于橢圓的短軸長,且橢圓經(jīng)過點.
(1)求橢圓的方程;
(2)過點的直線與直線交于點,與橢圓交于,點關(guān)于原點的對稱點為,直線交直線交于點,求的最小值.
【答案】(1);(2)的最小值為4
【解析】
(1)依題意,則,代入求解即可得到結(jié)果;
(2)由題意可知直線的斜率存在且不為0,設(shè)直線的方程為,聯(lián)立,得到,聯(lián)立,得到,,結(jié)合點A可得直線的方程為,當(dāng)時求得,所以,不妨設(shè),再利用基本不等式即可求出最小值.
(1)依題意,則,代入,解得,所以;
(2)由題意可知直線的斜率存在且不為0,設(shè)直線的方程為,
,,所以,
,消去得,解得,,
所以,則,
所以直線的斜率,
直線的方程為,當(dāng)時,,所以,則,不妨設(shè),,當(dāng)且僅當(dāng)即時等號成立,所以的最小值為4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=0時,求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)令求函數(shù)的極值.
(3)若,正實數(shù)滿足,
證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(a為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點,l和C交于A,B兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)利用周末組織教職員工進行了一次秋季登山健身的活動,有N個人參加,現(xiàn)將所有參加者按年齡情況分為等七組,其頻率分布直方圖如圖所示,已知這組的參加者是6人.
(1)根據(jù)此頻率分布直方圖求N;
(2)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為X,求X的分布列、均值及方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按/次收費,并注冊成為會員,對會員逐次消費給予相應(yīng)優(yōu)惠,標(biāo)準如下:
消費次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收費比率 |
該公司注冊的會員中沒有消費超過次的,從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如下:
消費次數(shù) | 次 | 次 | 次 | 次 | 次 |
人數(shù) |
假設(shè)汽車美容一次,公司成本為元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(2)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,設(shè)該公司為一位會員服務(wù)的平均利潤為元,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上為增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個不同的極值點,記作,,且,證明:(為自然對數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,在中,是邊上的高,且,,是的中點.現(xiàn)沿進行翻折,使得平面平面,得到的圖形如圖(2)所示.
(1)求證:;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是橢圓:上的兩點,線段的中點在直線上.
(1)當(dāng)直線的斜率存在時,求實數(shù)的取值范圍;
(2)設(shè)是橢圓的左焦點,若橢圓上存在一點,使,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com