【題目】如圖,點T為圓上一動點,過點T分別作x軸,y軸的垂線,垂足分別為A,B,連接BA延長至點P,使得,點P的軌跡記為曲線C.
(1)求曲線C的方程;
(2)若點A,B分別位于x軸與y軸的正半軸上,直線AB與曲線C相交于M,N兩點,試問在曲線C上是否存在點Q,使得四邊形OMQN為平行四邊形,若存在,求出直線l方程;若不存在,說明理由.
【答案】(1);(2)這樣的直線不存在,理由見解析.
【解析】
(1)設(shè),則,由題意知,所以為中點,利用中點公式求得,再利用相關(guān)點法求軌跡方程即可;
(2)易知直線的斜率存在且不為零,設(shè)直線的方程為,由可得,聯(lián)立直線與曲線的方程可得,由韋達(dá)定理可知與的關(guān)系,利用四邊形OMQN為平行四邊形,則對角線相互平分可得,代入曲線的方程,進(jìn)而求解即可
(1)設(shè),則,
由題意知,所以為中點,
由中點坐標(biāo)公式得,即,
又點在圓上,
故滿足,則,
所以曲線C為
(2)由題意知直線的斜率存在且不為零,
設(shè)直線的方程為,則,,
因為,所以,即①
聯(lián)立方程,消去得:,
設(shè),,
則,
因為為平行四邊形,所以為,即,
因為點在曲線上,故,整理得②
將①代入②,得,該方程無解,
故這樣的直線不存在.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】淮北市第一次模擬考試?yán)砜乒部颊Z文、數(shù)學(xué)、英語、物理、化學(xué)、生物六科,安排在某兩日的四個半天考完,每個半天考一科或兩科.若語文、數(shù)學(xué)、物理三科中任何兩科不能排在同一個半天,則此次考試不同安排方案的種數(shù)有( )(同一半天如果有兩科考試不計順序)
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:
甲公司 | 乙公司 | |||||||||
職位 | A | B | C | D | 職位 | A | B | C | D | |
月薪/元 | 6000 | 7000 | 8000 | 9000 | 月薪/元 | 5000 | 7000 | 9000 | 11000 | |
獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | |
(1)根據(jù)以上信息,如果你是該求職者,你會選擇哪一家公司?說明理由;
(2)某課外實習(xí)作業(yè)小組調(diào)查了1000名職場人士,就選擇這兩家公司的意愿做了統(tǒng)計,得到以下數(shù)據(jù)分布:
選擇意愿 人員結(jié)構(gòu) | 40歲以上(含40歲)男性 | 40歲以上(含40歲)女性 | 40歲以下男性 | 40歲以下女性 |
選擇甲公司 | 110 | 120 | 140 | 80 |
選擇乙公司 | 150 | 90 | 200 | 110 |
若分析選擇意愿與年齡這兩個分類變量,計算得到的K2的觀測值為k1=5.5513,測得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯誤的概率的上限是多少?并用統(tǒng)計學(xué)知識分析,選擇意愿與年齡變量和性別變量哪一個關(guān)聯(lián)性更大?
附:
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率,是橢圓上的動點,且點到橢圓焦點的距離的最小值為1.
(1)求橢圓的方程;
(2)過橢圓的右焦點的直線交橢圓于,兩點,當(dāng)時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,為的中點,將沿直線翻折成,連結(jié),為的中點,則在翻折過程中,下列說法中所有正確的是( )
A.存在某個位置,使得
B.翻折過程中,的長是定值
C.若,則
D.若,當(dāng)三棱錐的體積最大時,三棱錐的外接球的表面積是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體中,,均為邊長為2的正三角形,且平面平面,四邊形為正方形.
(1)若平面平面,求證:平面平面;
(2)若二面角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復(fù)發(fā)的情況進(jìn)行了統(tǒng)計,得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為.
(1)補(bǔ)充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有把握認(rèn)為甲乙兩套治療方案對患者白血病復(fù)發(fā)有影響;
復(fù)發(fā) | 未復(fù)發(fā) | 總計 | |
甲方案 | |||
乙方案 | 2 | ||
總計 | 70 |
(2)為改進(jìn)“甲方案”,按分層抽樣組成了由5名患者構(gòu)成的樣本,求隨機(jī)抽取2名患者恰好是復(fù)發(fā)患者和未復(fù)發(fā)患者各1名的概率.
附:
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個零點為和.
(I)求曲線在點處的切線方程;
(II)求函數(shù)的單調(diào)區(qū)間;
(III)求函數(shù)在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是半圓的直徑,是半圓上除點外的一個動點,垂直于所在的平面,垂足為,,且,.
(1)證明:平面平面;
(2)當(dāng)為半圓弧的中點時,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com