【題目】某幾何體的三視圖如圖所示,記A為此幾何體所有棱的長(zhǎng)度構(gòu)成的集合,則(

A.3∈A
B.5∈A
C.2 ∈A
D.4 ∈A

【答案】D
【解析】解:根據(jù)三視圖可知幾何體是一個(gè)三棱柱截去一個(gè)三棱錐,
四邊形ABCD是一個(gè)邊長(zhǎng)為4的正方形,
且AF⊥面ABCD,DE∥AF,DE=4,AF=2,
∴AF⊥AB、DE⊥DC、DE⊥BD,
∴EC= =4 ,EF=FB= =2
BE= = =4 ,
∵A為此幾何體所有棱的長(zhǎng)度構(gòu)成的集合,
∴A={2,4,4 ,4 ,4 },
故選:D.

由三視圖知該幾何體一個(gè)直三棱柱切去一個(gè)三棱錐所得的幾何體,由三視圖求出幾何元素的長(zhǎng)度,判斷出線面的位置關(guān)系,由勾股定理求出幾何體的棱長(zhǎng),即可得到答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)公式an=5﹣n,其前n項(xiàng)和為Sn , 將數(shù)列{an}的前4項(xiàng)抽去其中一項(xiàng)后,剩下三項(xiàng)按原來(lái)順序恰為等比數(shù)列{bn}的前3項(xiàng),記{bn}的前n項(xiàng)和為T(mén)n , 若存在m∈N* , 使對(duì)任意n∈N* , 總有Sn<Tn+λ恒成立,則實(shí)數(shù)λ的取值范圍是(
A.λ≥2
B.λ>3
C.λ≥3
D.λ>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)C在橢圓M: =1(a>b>0)上,若點(diǎn)A(﹣a,0),B(0, ),且 =
(1)求橢圓M的離心率;
(2)設(shè)橢圓M的焦距為4,P,Q是橢圓M上不同的兩點(diǎn).線段PQ的垂直平分線為直線l,且直線l不與y軸重合.
①若點(diǎn)P(﹣3,0),直線l過(guò)點(diǎn)(0,﹣ ),求直線l的方程;
②若直線l過(guò)點(diǎn)(0,﹣1),且與x軸的交點(diǎn)為D.求D點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|2x2﹣3x﹣9≤0},B={x|x≥m}.若(RA)∩B=B,則實(shí)數(shù)m的值可以是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)與常數(shù),若恒成立,則稱(chēng)為函數(shù)的一個(gè)“P數(shù)對(duì)”,設(shè)函數(shù)的定義域?yàn)?/span>,且。

(1)若的一個(gè)“P數(shù)對(duì)”,且,求常數(shù)的值;

(2)若(1,1)是的一個(gè)“P數(shù)對(duì)”,且上單調(diào)遞增,求函數(shù)上的最大值與最小值;

(3)若(-2,0)是的一個(gè)“P數(shù)對(duì)”,且當(dāng)時(shí),,求k的值及在區(qū)間上的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】霧霾影響人們的身體健康,越來(lái)越多的人開(kāi)始關(guān)心如何少產(chǎn)生霧霾,春節(jié)前夕,某市健康協(xié)會(huì)為了了解公眾對(duì)“適當(dāng)甚至不燃放煙花爆竹”的態(tài)度,隨機(jī)采訪了50人,將凋查情況進(jìn)行整理后制成下表:

年齡(歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

12

7

3

3


(1)以贊同人數(shù)的頻率為概率,若再隨機(jī)采訪3人,求至少有1人持贊同態(tài)度的概率;
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中不贊同“適當(dāng)甚至不燃放煙花爆竹”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(-x-1)=f(x-1),其圖象過(guò)點(diǎn)(0,1),且與x軸有唯一交點(diǎn)。

(1)f(x)的解析式;

(2)設(shè)函數(shù)g(x)=f(x)-(2+a)x,求g(x)[1,2]上的最小值h(a)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是幾何體的平面展開(kāi)圖,其中四邊形ABCD為正方形,E,F分別為PA,PD的中點(diǎn),在此幾何體中,給出下面4個(gè)結(jié)論:

直線BE與直線CF共面;②直線BE與直線AF異面;

直線EF平面PBC;④平面BCE平面PAD.

其中正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案