【題目】如圖,拋物線的焦點到準(zhǔn)線的距離與橢圓的長半軸相等,設(shè)橢圓的右頂點為,在第一象限的交點為為坐標(biāo)原點,且的面積為

1求橢圓的標(biāo)準(zhǔn)方程;

2若過點的直線交拋物線兩點

求證:恒為鈍角;

射線分別交橢圓兩點,記的面積分別是,問是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由

【答案】12證明見解析; 存在,

【解析】

試題分析:1 將點代入橢圓方程橢圓為;2設(shè)直線的方程

,

恒為鈍角;的斜率為

所求直線為

試題解析: 1,可得橢圓的長半軸

,,代入拋物線求得

將點代入橢圓,可得,

所以橢圓為

2設(shè)直線的方程為,由

設(shè),,則,,

,恒為鈍角;

因為直線的斜率為,所以直線的方程為

,同理

,

,

解之得:,所以所求直線為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過棱柱不相鄰兩條側(cè)棱的截面是 (  )

A. 矩形 B. 正方形

C. 梯形 D. 平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖或稱主視圖是一個底邊長為8、高為4的等腰三角形,側(cè)視圖或稱左視圖是一個底邊長為6、高為4的等腰三角形

1求該幾何體的體積;

2求該幾何體的側(cè)面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.

(1)AB,(RA)∩B;

(2)AC,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A,B兩城相距100 km,在兩地之間距Ax km處的D地建一核電站給AB兩城供電.為保證城市安全,核電站與城市距離不得少于10 km.已知供電費用與供電距離的平方和供電量之積成正比,比例系數(shù)λ=0.25.若A城供電量為20億度/月,B城為10億度/月.

(1)求x的取值范圍;

(2)把月供電總費用y表示成x的函數(shù);

(3)核電站建在距A城多遠(yuǎn),才能使供電費用最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(1,1)上的奇函數(shù)fx),在x10)時,fx=2x+2x

(1)求fx)在(11)上的表達(dá)式;

(2)用定義證明fx)在(1,0)上是減函數(shù);

3)若對于x01)上的每一個值,不等式m2xfx)<4x1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016~2017安徽蚌埠高二期中)三條兩兩平行的直線可以確定平面的個數(shù)為

(  )

A. 0 B. 1

C. 0或1 D. 1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個關(guān)于圓錐曲線的命題中

設(shè)為兩個定點,為非零常數(shù),,則動點的軌跡為雙曲線;

方程的兩根可分別作為橢圓和雙曲線的離心率;

設(shè)定圓上一定點作圓的動點弦為坐標(biāo)原點,若,則動點的軌跡為橢圓;

過點作直線,使它與拋物線僅有一個公共點,這樣的直線有3條;

其中真命題的序號為_________________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(-3,-1)和(4,-6)在直線3x-2ya=0的兩側(cè),則實數(shù)a的取值范圍為(  )

A. (-7,24)

B. (-∞,-7)∪(24,+∞)

C. (-24,7)

D. (-∞,-24)∪(7,+∞)

查看答案和解析>>

同步練習(xí)冊答案