【題目】如圖,在三棱柱中,點(diǎn)P,G分別是,的中點(diǎn),已知⊥平面ABC,==3,==2.

(I)求異面直線AB所成角的余弦值;

(II)求證:⊥平面;

(III)求直線與平面所成角的正弦值.

【答案】見解析(Ⅲ

【解析】分析由題意得AB,故∠G是異面直線AB所成的角,解三角形可得所求余弦值.在三棱柱中,由⊥平面ABC可得A1G,于是A1G,A1G,根據(jù)線面垂直的判定定理可得結(jié)論成立.(Ⅲ的中點(diǎn)H,連接AH,HG;HG的中點(diǎn)O,連接OP,PO//A1G可得平面,

故得∠PC1OPC1與平面所成的角,然后解三角形可得所求.

詳解:

(I)AB,

∴∠G是異面直線AB所成的角.

==2,GBC的中點(diǎn),

A1GB1C1

,

,

即異面直線AGAB所成角的余炫值為

(II)在三棱柱中,

⊥平面ABC,平面ABC,

A1G,

A1G,

A1G,,

平面

(III)解:取的中點(diǎn)H,連接AH,HG;HG的中點(diǎn)O,連接OP,

PO//A1G,

平面,

∴∠PC1OPC1與平面所成的角.

由已知得,,

∴直線與平面所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點(diǎn),若其歐拉線的方程為,則頂點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知2Sn=3n+1+2n﹣3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把直線向左平移個單位,再向下平移個單位后,所得直線正好與圓相切,則實(shí)數(shù)的值為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|< )的部分圖象如圖所示,下列說法正確的是(

A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對稱
C.將函數(shù)f(x)的圖象向左平移 個單位得到的函數(shù)圖象關(guān)于y軸對稱
D.函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ+ ,kπ+ ](K∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線axby—4=0和圓x2y2=4沒有公共點(diǎn),則過點(diǎn)(a,b)的直線與橢圓=1的公共點(diǎn)個數(shù)為(  )

A. 0 B. 1 C. 2 D. ab的取值來確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一動圓與定圓外切,同時和圓內(nèi)切,定點(diǎn)A(1,1).

(1)求動圓圓心P的軌跡E的方程,并說明是何種曲線;

(2)ME上任意一點(diǎn), FE的左焦點(diǎn),試求的最小值;

(3)試求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體,,均垂直于平面,,,

(1)證明:⊥平面

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是線段BF上一點(diǎn),AB=AF=BC=2.

(1)當(dāng)GB=GF時,求證:EG∥平面ABC;
(2)求二面角E﹣BF﹣A的余弦值;
(3)是否存在點(diǎn)G滿足BF⊥平面AEG?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案