函數(shù)y=3sin(3x+
π
3
)-3的最小正周期為(  )
A、
π
3
B、
3
C、3π
D、
2
考點:三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)y=Asin(ωx+φ)的周期等于 T=
ω
,可得結(jié)論.
解答: 解:函數(shù)y=3sin(3x+
π
3
)-3的最小正周期為T=
3
,
故選:B.
點評:本題主要考查三角函數(shù)的周期性及其求法,利用了y=Asin(ωx+φ)的周期等于 T=
ω
,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)利用基本不等式證明不等式:已知a>3,求證 a+
4
a-3
≥7;
(2)已知x>0,y>0,且x+y=1,求
4
x
+
9
y
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點E(2,1)和圓O:x2+y2=16,過點E的直線l被圓O所截得的弦長為2
15
,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x,y 滿足x2+y2-4x-5=0,則y-x的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以直線x-2y=0和x+2y-4=0的交點為圓心,且過點(2,0)的圓的方程為( 。
A、(x-2)2+(y-1)2=1
B、(x+2)2+(y+1)2=1
C、(x-2)2+(y-1)2=2
D、(x+2)2+(y+1)2=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x-a
ax
(a>0)
(1)判斷并證明y=f(x)在x∈(0,+∞)上的單調(diào)性;
(2)若存在x0,使f(x0)=x0,則稱x0為函數(shù)f(x)的不動點,現(xiàn)已知該函數(shù)在(0,+∞)上有兩個不等的不動點,求a的取值范圍;
(3)若y═
1
x+1
f(x)的值域為{y|y≥9或y≤1},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
,
b
滿足|
a
|=|
b
|=1,
a
b
=-
1
2
,則|
a
+2
b
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列三個圖象中能表示y是x的函數(shù)圖象的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=(
1
2
x2-2的單調(diào)遞減區(qū)間為( 。
A、(-∞,0]
B、[0,+∞)
C、(-∞,
2
]
D、[
2
,+∞)

查看答案和解析>>

同步練習冊答案