在二項式(x+
2
x
)4
的展開式中,x2項的系數(shù)為( 。
A、8B、4C、6D、12
考點:二項式系數(shù)的性質
專題:計算題,二項式定理
分析:利用二項展開式的通項公式,即可求得二項式式(x+
2
x
)4
的展開式中x2的系數(shù).
解答: 解:由Tr+1=C4rx4-r•(
2
x
r=2rC4rx4-2r,
令r=1,可得二項式(x+
2
x
)4
的展開式中的x2系數(shù)為:2C41=8.
故選:A.
點評:本題考查二項式定理的應用,重點考查通項公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過點P(1,-2)作直線與曲線
x=2
2
cosθ
y=2sinθ
(θ為參數(shù))相交于A,B兩點,且|PA|•|PB|=
2
3
,求該直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足約束條件
x-y+1≥0
x+y≥0
x≤1
,則z=2x+y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式x2-2x+3-a<0成立的一個充分條件是0<x<4,則實數(shù)a的取值范圍應為(  )
A、a≥11B、a>11
C、a>9D、a≥9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知存在正數(shù)a,b,c滿足
1
e
c
a
≤2,clnb=a+clnc,則ln
b
a
的取值范圍是( 。
A、[1,
1
2
+ln2]
B、[1,+∞)
C、(-∞,e-1]
D、[1,e-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀如圖所示的程序框圖,運行相應的程序,輸出的結果i=( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2為橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦點,點M在橢圓Γ上.若△MF1F2為直角三角形,且|MF1|=2|MF2|,則橢圓Γ的離心率為( 。
A、
3
3
5
3
B、
5
3
6
3
C、
6
3
7
3
D、
3
3
5
-1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為e=
2
2
,以原點為圓心,橢圓短半軸長為半徑的圓與直線x-y+
2
=0
相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過右焦點F作斜率為-
2
2
的直線l交曲線C于M、N兩點,且
OM
+
ON
+
OH
=
0
,又點H關于原點O的對稱點為點G,試問M、G、N、H四點是否共圓?若共圓,求出圓心坐標和半徑;若不共圓,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}為公差不為零的等差數(shù)列,首項a1=a,{an}的部分項ak1、ak2、…、akn恰為等比數(shù)列,且k1=1,k2=5,k3=17.
(1)求數(shù)列{an}的通項公式an(用a表示);
(2)設數(shù)列{kn}的前n項和為Sn,求證:
1
S1
+
1
S2
+…+
1
Sn
3
2
 
 
(n是正整數(shù)).

查看答案和解析>>

同步練習冊答案