已知實(shí)數(shù)x,y滿足約束條件
x-y+1≥0
x+y≥0
x≤1
,則z=2x+y的最小值是
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)A時(shí),直線的截距最小,
此時(shí)z最小,
x-y+1=0
x+y=0
,解得
x=-
1
2
y=
1
2

即A(-
1
2
,
1
2
),此時(shí)z=-
1
2
×2+
1
2
=-
1
2
,
故答案為:-
1
2
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-(1+a)x+
1
2
x2,a∈R
(Ⅰ)當(dāng)0<a<1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)當(dāng)x∈[
1
e
,+∞)時(shí)f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
x+2
,x∈(
1
2
,1]
-
1
2
x+
1
4
,x∈[0,
1
2
]
,g(x)=asin(
π
3
x+
2
)-2a+2(a>0)
,給出下列結(jié)論:
①函數(shù)f(x)的值域?yàn)?span id="cfcogc0" class="MathJye">[0,
1
3
];
②函數(shù)g(x)在[0,1]上是增函數(shù);
③對(duì)任意a>0,方程f(x)=g(x)在[0,1]內(nèi)恒有解;
④若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是
5
9
≤a≤
4
5

其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:①5>4或4>5;②9≥3;③命題“若a>b,則a+c>b+c”的否命題;④命題“矩形的兩條對(duì)角線相等”的逆命題.其中假命題的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某超市中秋前30天月餅銷售總量f(t)與時(shí)間t(0<t≤30,t∈Z)的關(guān)系大致滿足f(t)=t2+10t+12,則該超市前t天平均售出(如前10天的平均售出為
f(10)
10
)的月餅最少為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
.
ax1
1x+1
.
<0對(duì)任意x∈R恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5名同學(xué)排成一列,某個(gè)同學(xué)不排排頭的排法種數(shù)為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二項(xiàng)式(x+
2
x
)4
的展開式中,x2項(xiàng)的系數(shù)為( 。
A、8B、4C、6D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1(-
3
,0)、F2
3
,0),橢圓上的點(diǎn)P滿足∠PF1F2=90°,且△PF1F2的面積為S△PF1F2
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左、右頂點(diǎn)分別為A、B,過點(diǎn)Q(1,0)的動(dòng)直線l與橢圓C相交于M、N兩點(diǎn),直線AN與直線x=4的交點(diǎn)為R,證明:點(diǎn)R總在直線BM上.

查看答案和解析>>

同步練習(xí)冊(cè)答案