【題目】已知、分別為雙曲線的左右焦點,左右頂點為、,是雙曲線上任意一點,則分別以線段、為直徑的兩圓的位置關系為( )
A. 相交B. 相切C. 相離D. 以上情況均有可能
科目:高中數學 來源: 題型:
【題目】已知平行四邊形ABCD的三個頂點的坐標為,,.
在中求邊AC的高線所在直線的一般方程;
求平行四邊形ABCD的對角線BD的長度;
求平行四邊形ABCD的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著城市化進程日益加快,勞動力日益向城市流動,某市為抽查該市內工廠的生產能力,隨機抽取某個人數為1000人的工廠,其中有750人為高級工,250人為初級工,擬采用分層抽樣的方法從本廠抽取100名工人,來抽查工人的生產能力,初級工和高級工的抽查結果分組情況如表1和表2.
表1:
生產能力分組 | |||||
人數 | 4 | 8 | 5 | 3 |
表2:
生產能力分組 | ||||
人數 | 6 | 36 | 18 |
(1)計算,,完成頻率分直方圖:
圖1:初級工人生產能力的頻率分布直方圖 圖2:高級工人生產能力的頻率分布直方圖
(2)初級工和高級工各抽取多少人?
(3)分別估計兩類工人生產能力的平均數,并估計該工廠工人生產能力的平均數.(同一組中的數據用該區(qū)間的中點值作代表)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(1)若函數是R上的單調函數,求實數a的取值范圍;
(2)設a=, (, ), 是的導函數.①若對任意的x>0, >0,求證:存在,使<0;②若,求證: <.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若函數在上是減函數,求實數的取值范圍;
(2)令,是否存在實數,當(是自然常數)時,函數的最小值是3,若存在,求出的值;若不存在,說明理由.
(3)當時,證明:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面內兩點M(4,﹣2),N(2,4).
(1)求MN的垂直平分線方程;
(2)直線l經過點A(3,0),且點M和點N到直線l的距離相等,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com