14.已知集合M={x|lnx>0},N={x|x2-3x-4>0},則M∩N=(  )
A.(-1,4)B.(1,+∞)C.(1,4)D.(4,+∞)

分析 求出M與N中不等式的解集分別確定出兩集合,求出M與N的交集即可.

解答 解:由M中不等式變形得:lnx>0=ln1,
解得:x>1,即M=(1,+∞),
由N中不等式變形得:(x-4)(x+1)>0,
解得:x<-1或x>4,即N=(-∞,-1)∪(4,+∞),
則M∩N=(4,+∞),
故選:D.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.袋中裝有大小相同的四個(gè)球,四個(gè)球上分別標(biāo)有數(shù)字“2”,“3”,“4”,“6”,現(xiàn)從中隨機(jī)選取三個(gè)球,則所選的三個(gè)球上的數(shù)字能構(gòu)成等差數(shù)列的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若a=1,b=2,C=60°,則c=$\sqrt{3}$,△ABC的面積S=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.1934年,來自東印度(今孟加拉國)的學(xué)者森德拉姆發(fā)現(xiàn)了“正方形篩子”,其數(shù)字排列規(guī)律與等差數(shù)列有關(guān),如圖,則“正方形篩子”中,位于第8行第7列的數(shù)是127.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+bx+c在$x=-\frac{2}{3}$與x=1處都取得極值.
(1)求a,b的值;
(2)若對x∈R,f(x)有三個(gè)零點(diǎn),求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.F1、F2是雙曲線C的焦點(diǎn),過F1且與雙曲線實(shí)軸垂直的直線與雙曲線相交于A、B,且△F2AB為正三角形,則雙曲線的離心率e=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.$\overrightarrow{a}$、$\overrightarrow$為單位向量,若$|\overrightarrow{a}-4\overrightarrow|=3\sqrt{2}$,則$|\overrightarrow{a}+4\overrightarrow|$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若集合A={2,4,6,8},B={x|x2-9x+18≤0},則A∩B=( 。
A.{2,4}B.{4,6}C.{6,8}D.{2,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)p:2x<1,q:x(x+1)<0,則p是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案