2.1934年,來(lái)自東印度(今孟加拉國(guó))的學(xué)者森德拉姆發(fā)現(xiàn)了“正方形篩子”,其數(shù)字排列規(guī)律與等差數(shù)列有關(guān),如圖,則“正方形篩子”中,位于第8行第7列的數(shù)是127.

分析 通過(guò)圖表觀察,每一行的公差為3,5,7,…2n+1.再由等差數(shù)列的通項(xiàng)公式,即可得到所求值.

解答 解:第一行的數(shù)字是加3遞增,第二行加5遞增,第三行加7遞增,
第n行,3+2×(n-1)遞增.
則第8行為3+2×(8-1)=17遞增.
第8行的第7個(gè)數(shù)就是4+(8-1)×3+(7-1)×17=127.
故答案為:127.

點(diǎn)評(píng) 本題給出“正方形篩子”的例子,求表格中的指定項(xiàng),著重考查了等差數(shù)列的通項(xiàng)公式及其應(yīng)用的知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=sinx(x∈[0,2π])的單調(diào)遞減區(qū)間是[$\frac{π}{2}$,$\frac{3π}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\frac{sin(4x+\frac{π}{3})}{sin(2x+\frac{2π}{3})}$ 的圖象與g(x)的圖象關(guān)于直線x=$\frac{π}{12}$ 對(duì)稱(chēng),則g(x)的圖象的一個(gè)對(duì)稱(chēng)中心為( 。
A.($\frac{π}{6}$,0)B.($\frac{π}{3}$,0)C.($\frac{π}{4}$,0)D.($\frac{π}{2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為(1,0),且右焦點(diǎn)到上頂點(diǎn)的距離為$\sqrt{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)P(2,2)的動(dòng)直線交橢圓C于A,B兩點(diǎn),
(i)若|PA||PB|=$\frac{20}{3}$,求直線AB的斜率;
(ii)點(diǎn)Q在線段AB上,且滿足$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{2}{|PQ|}$,求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在圓O:x2+y2=4上任取一點(diǎn)P,過(guò)點(diǎn)P作y軸額垂線段PQ,Q為垂足.當(dāng)P在圓上運(yùn)動(dòng)時(shí),線段PQ中點(diǎn)G的軌跡為C.
(Ⅰ)求C的方程;
(Ⅱ)直線l與圓O交于M,N兩點(diǎn),與曲線C交于E,F(xiàn)兩點(diǎn),若|MN|=$\frac{8\sqrt{5}}{5}$,試判斷∠EOF是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知橢圓x2+2y2=8的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,A為橢圓上的任意一點(diǎn),AP是∠F1AF2的外角平分線,且$\overrightarrow{AP}•\overrightarrow{{F_2}P}=0$,則點(diǎn)P的坐標(biāo)一定滿足( 。
A.x2+y2=8B.x2+y2=1C.x2-y2=1D.$\frac{x^2}{4}+\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合M={x|lnx>0},N={x|x2-3x-4>0},則M∩N=(  )
A.(-1,4)B.(1,+∞)C.(1,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,直角△ABC中,∠ACB=90°,BC=2AC=4,D、E分別是AB、BC邊的中點(diǎn),沿DE將△BDE折起至△FDE,且∠CEF=60°.
(Ⅰ)求四棱錐F-ADEC的體積;
(Ⅱ)求證:平面ADF⊥平面ACF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知直線y=mx與x2+y2-4x+2=0相切,則m值為(  )
A.±$\sqrt{3}$B.±$\frac{\sqrt{3}}{3}$C.±$\frac{\sqrt{3}}{2}$D.±1

查看答案和解析>>

同步練習(xí)冊(cè)答案