【題目】設命題p:函數(shù)f(x)=lg(x2+ax+1)的定義域為R;命題q:函數(shù)f(x)=x2﹣2ax﹣1在(﹣∞,﹣1]上單調(diào)遞減.
(1)若命題“p∨q”為真,“p∧q”為假,求實數(shù)a的取值范圍;
(2)若關(guān)于x的不等式(x﹣m)(x﹣m+5)<0(m∈R)的解集為M;命題p為真命題時,a的取值集合為N.當M∪N=M時,求實數(shù)m的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).若函數(shù)f(x)有兩個極值點x1,x2,記過點A(x1,f(x1))和B(x2,f(x2))的直線斜率為k,若0<k≤2e,則實數(shù)m的取值范圍為( 。
A. B. (e,2e] C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù),,直線的參數(shù)方程為 為參數(shù)).
(1)若與相交,求實數(shù)的取值范圍;
(2)若,設點在曲線上,求點到的距離的最大值,并求此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,是的中點.
(1)求證:平面;
(2)求證:平面平面.(只需在下面橫線上填寫給出的如下結(jié)論的序號:①平面,②平面,③,④,⑤)
證明:(1)設,連接.因為底面是正方形,所以為的中點,又是的中點,所以_________.因為平面,____________,所以平面.
(2)因為平面平面,所以___________,因為底面是正方形,所以_______,又因為平面平面,所以_________.又平面,所以平面平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學高一年級共8個班,現(xiàn)從高一年級選10名同學組成社區(qū)服務小組,其中高一(1)班選取3名同學,其它各班各選取1名同學.現(xiàn)從這10名同學中隨機選取3名同學,到社區(qū)老年中心參加“尊老愛老”活動(每位同學被選到的可能性相同).
(1)求選出的3名同學來自不同班級的概率;
(2)設X為選出同學中高一(1)班同學的人數(shù),求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60][60,70][70,80][80,90][90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如下表所示,求數(shù)學成績在[50,90)之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)設函數(shù),討論函數(shù)在區(qū)間內(nèi)的零點個數(shù);
(2)若對任意,總存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請將上表數(shù)據(jù)補充完整,填寫在相應位置,并求出函數(shù)的解析式;
(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點為橢圓的右焦點,點在橢圓上,已知橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過右焦點的直線與橢圓相交于,兩點,記三條邊所在直線的斜率的乘積為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com