【題目】如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.
【答案】(1)見(jiàn)解析(2)
【解析】
(1)由AB是圓的直徑,得AC⊥BC,
由PA⊥平面ABC,BC平面ABC,得PA⊥BC.
又PA∩AC=A,PA平面PAC,AC平面PAC,
所以BC⊥平面PAC.
因?yàn)?/span>BC平面PBC,
所以平面PBC⊥平面PAC.
(2)過(guò)C作CM∥AP,則CM⊥平面ABC.
如圖,以點(diǎn)C為坐標(biāo)原點(diǎn),分別以直線CB、CA、CM為x軸,y軸,z軸建立空間直角坐標(biāo)系.
在Rt△ABC中,因?yàn)?/span>AB=2,AC=1,所以BC=.
因?yàn)?/span>PA=1,所以A(0,1,0),B(,0,0),P(0,1,1).故=(,0,0),=(0,1,1).
設(shè)平面BCP的法向量為n1=(x1,y1,z1),則所以
不妨令y1=1,則n1=(0,1,-1).因?yàn)?/span>=(0,0,1),=(,-1,0),
設(shè)平面ABP的法向量為n2=(x2,y2,z2),則所以
不妨令x2=1,則n2=(1,,0).于是cos〈n1,n2〉==.
由題圖可判斷二面角為銳角,所以二面角C-PB-A的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標(biāo)方程和曲線的普通方程;
(2)若曲線為曲線關(guān)于直線的對(duì)稱(chēng)曲線,點(diǎn),分別為曲線、曲線上的動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、、表示不同的直線,、、表示不同的平面,給出下列個(gè)命題:其中命題正確的個(gè)數(shù)是( )
①若,且,則;
②若,且,則;
③若,,,則;
④ 若,,,且,則.
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)),在以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線與交于,兩點(diǎn),點(diǎn)的坐標(biāo)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市政府為了節(jié)約生活用電,計(jì)劃在本市試行居民生活用電定額管理,即確定一戶(hù)居民月用電量標(biāo)準(zhǔn)a,用電量不超過(guò)a的部分按平價(jià)收費(fèi),超出a的部分按議價(jià)收費(fèi)為此,政府調(diào)查了100戶(hù)居民的月平均用電量單位:度,以,,,,,分組的頻率分布直方圖如圖所示.
根據(jù)頻率分布直方圖的數(shù)據(jù),求直方圖中x的值并估計(jì)該市每戶(hù)居民月平均用電量的值;
用頻率估計(jì)概率,利用的結(jié)果,假設(shè)該市每戶(hù)居民月平均用電量X服從正態(tài)分布
估計(jì)該市居民月平均用電量介于度之間的概率;
利用的結(jié)論,從該市所有居民中隨機(jī)抽取3戶(hù),記月平均用電量介于度之間的戶(hù)數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,為的中點(diǎn)..
(1)求證:平面平面;
(2),在線段上是否存在一點(diǎn),使得二面角的余弦值為.請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若曲線上點(diǎn)處的切線過(guò)點(diǎn),求函數(shù)的單調(diào)減區(qū)間;
(Ⅱ)若函數(shù)在上無(wú)零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)若函數(shù)存在兩個(gè)極值點(diǎn),求的取值范圍;
(3)若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com