【題目】已知集合A={x|x2-6x+8<0}, .
(1)若x∈A是x∈B的充分條件,求a的取值范圍.
(2)若A∩B=,求a的取值范圍.
【答案】
(1)解:當a=0時,B=,不合題意.
當a>0時,B={x|a<x<3a},要滿足題意,
則 解得 ≤a≤2.
當a<0時,B={x|3a<x<a},要滿足題意,
則 無解.
綜上,a的取值范圍為 .
(2)解:要滿足A∩B=,
當a>0時,B={x|a<x<3a}則a≥4或3a≤2,即0<a≤ 或a≥4.
當a<0時,B={x|3a<x<a},則a≤2或a≥ ,即a<0.
當a=0時,B=,A∩B=.
綜上,a的取值范圍為 ∪[4,+∞)
【解析】(1)對a分情況討論解出集合B,再結(jié)合x∈A是x∈B的充分條件得到關于邊界點的范圍分別求出a的取值范圍并起來即可。(2)利用已知條件A∩B=,對a分情況討論求出集合B討論邊界點的范圍進而得到a的范圍并起三種情況下的a的取值范圍即可。
科目:高中數(shù)學 來源: 題型:
【題目】某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關系式:y= +10(x﹣6)2 , 其中3<x<6,a為常數(shù),已知銷售的價格為5元/千克時,每日可以售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點,且.
(1)求證:平面平面;
(2)求證:平面平面;
(3)求三棱錐與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是等比數(shù)列,a1=2,且a1 , a3+1,a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2an , 求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 中,以原點O為極點,x軸的非負半軸為極軸建立極坐標系,直線 的極坐標方程是 ,圓 的極坐標方程是 .
(1)求 與 交點的極坐標;
(2)設 為 的圓心, 為 與 交點連線的中點,已知直線 的參數(shù)方程是 ( 為參數(shù)),求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,若 , ,使得 ,則實數(shù) 的取值范圍是( )
A.(-∞,1]
B.[1,+∞)
C.(-∞,2]
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市出租車的收費標準是:3千米以內(nèi)(含3千米),收起步價8元;3千米以上至8千米以內(nèi)(含8千米),超出3千米的部分按元/千米收。8千米以上,超出8千米的部分按2元/千米收取.
(1)計算某乘客搭乘出租車行駛7千米時應付的車費;
(2)試寫出車費 (元)與里程 (千米)之間的函數(shù)解析式并畫出圖像;
(3)小陳周末外出,行程為10千米,他設計了兩種方案:
方案1:分兩段乘車,先乘一輛行駛5千米,下車換乘另一輛車再行5千米至目的地
方案2:只乘一輛車至目的地,試問:以上哪種方案更省錢,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) , ,其中
(1)設函數(shù) ,求函數(shù) 的單調(diào)區(qū)間;
(2)若存在 ,使得 成立,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com