【題目】在平面直角坐標(biāo)系 中,以原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程是 ,圓 的極坐標(biāo)方程是 .
(1)求 與 交點的極坐標(biāo);
(2)設(shè) 為 的圓心, 為 與 交點連線的中點,已知直線 的參數(shù)方程是 ( 為參數(shù)),求 的值.
【答案】
(1)解: 代入 ,得 .所以 或 ,取 , .再由 得 ,或 .所以 與 交點的極坐標(biāo)是 ,或
(2)解:參數(shù)方程化為普通方程得 .由(Ⅰ)得 , 的直角坐標(biāo)分別是 , ,代入解得
【解析】(1)把極坐標(biāo)坐標(biāo)代入到直線的極坐標(biāo)方程中整理得到 cos θ = 0 或 tan θ = 1,進(jìn)而得出 θ的大小代入到圓C的極坐標(biāo)方程求出 ρ 的值,進(jìn)而求出交點的極坐標(biāo)。(2)由題意利用極坐標(biāo)和直角坐標(biāo)的互化關(guān)系得到直線的一般方程由(1)的結(jié)論求出點P、Q 的坐標(biāo)代入直線的方程求出結(jié)果即可。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,且經(jīng)過點M(﹣3,﹣1).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:x﹣y﹣2=0與橢圓C交于A,B兩點,點P為橢圓C上一動點,當(dāng)△PAB的面積最大時,求點P的坐標(biāo)及△PAB的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若將函數(shù)y=2sin(3x+φ)的圖象向右平移 個單位后得到的圖象關(guān)于點( )對稱,則|φ|的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所2017年10月16日正式發(fā)布一種水稻新種質(zhì),株高可達(dá)2.2米以上,具有高產(chǎn)、抗倒伏、抗病蟲害、酎淹澇等特點,被認(rèn)為開啟了水稻研制的一扇新門.以下是兩組實驗田中分別抽取的6株巨型稻的株高,數(shù)據(jù)如下(單位:米).
: 1.7 1.8 1.9 2.2 2.4 2.5
: 1.8 1.9 2.0 2.0 2.4 2.5
(1)繪制兩組數(shù)據(jù)的莖葉圖,并求出組數(shù)據(jù)的中位數(shù)和組數(shù)據(jù)的方差;
(2)從組樣本中隨機(jī)抽取2株,請列出所有的基本事件,并求至少有一株超過組株高平均值的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-6x+8<0}, .
(1)若x∈A是x∈B的充分條件,求a的取值范圍.
(2)若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列 滿足 , 是數(shù)列 的前 項和.
(1)求數(shù)列 的通項公式 ;
(2)令 ,求數(shù)列 的前 項和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列程序運行的結(jié)果是__________.
n=15
S=0
i=1
WHILE i<=n
S=S+i
i=i+2
WEND
PRINT S
END
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=,AB=,AC=2,A1C1=1,.
(1)證明:BCA1D;
(2)求二面角A-CC1-B的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com