某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100]
(1)求圖中a的值并計算[70,100]的人數(shù);
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分.
考點:頻率分布直方圖
專題:概率與統(tǒng)計
分析:(1)由頻率分布直方圖知:2a=[1-(0.02+0.03+0.04)×10]÷10=0.01.由此能求出a.
故答案為:0.005.
(2)由頻率分布直方圖,能估計出這100名學(xué)生語文成績的平均分.
解答: 解:(1)由頻率分布直方圖知:
2a=[1-(0.02+0.03+0.04)×10]÷10=0.01.
解得a=0.005.
故答案為:0.005.
(2)由頻率分布直方圖,
估計這100名學(xué)生語文成績的平均分:
.
x
=0.005×10×55+0.04×10×65+0.03×10×75+0.02×10×85+0.005×10×95=73(分).
∴估計這100名學(xué)生語文成績的平均分為73分.
點評:本題考查頻率分布直方圖的應(yīng)用,是基礎(chǔ)題,解題時要認(rèn)真審題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1F2是橢圓C1
x2
9
+
y2
5
=1與雙曲線C2的公共焦點,點P是曲線C1與C2的一個公共點,且|
OP
|=
61
3
(其中點O為坐標(biāo)原點),則雙曲線C2離心率為( 。
A、
2
B、
3
2
C、2
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f′(x)為f(x)的導(dǎo)數(shù),若f′(x)<f(x)對于任意的x∈R都成立,則( 。
A、f(0)<
f(2014)
e2014
B、f(0)>
f(2014)
e2014
C、f(0)=
f(2014)
e2014
D、
f(2014)
e2014
和f(0)的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心為C(-2,6)的圓經(jīng)過點M(0,6-2
3
).
(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l過點P(0,5)且被圓C截得的線段長為4
3
,求直線l的方程;
(Ⅲ)是否存在斜率是1的直線l′,使得以l′被圓C所截得的弦EF為直徑的圓經(jīng)過原點?若存在,試求出直線l′的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若目標(biāo)函數(shù)z=x+y中變量x,y滿足約束條件
x+2y≤8
0≤x≤4
0≤y≤3

(1)試確定可行域的面積;
(2)求出該線性規(guī)劃問題中所有的最優(yōu)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項和(n=1,2,3,…),按如下方式定義數(shù)列{an}:a1=m(m∈N*),對任意k∈N*,k>1,設(shè)ak為滿足0≤ak≤k-1的整數(shù),且k整除Sk
(1)當(dāng)m=9時,試給出{an}的前6項;
(2)證明:?k∈N*,有
Sk+1
k+1
Sk
k
+1;
(3)證明:對任意的m,數(shù)列{an}必從某項起成為常數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求所給函數(shù)的值域
(1)y=-cos2x+sinx
(2)y=
sinx-1
2sinx+2
,x∈[
π
6
7
6
π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正四棱錐P=ABCD中,AB=1,側(cè)棱PA與底面ABCD所成角的正切值為
2
2

(1)求二面角P-CD-A的大。
(2)設(shè)點F在AD上,AF=
1
3
AD,求點A到平面PBF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:在數(shù)列{an}中,a1=7,an+1=
7an
an+7
,
(1)請寫出這個數(shù)列的前4項,并猜想這個數(shù)列的通項公式.
(2)請證明你猜想的通項公式的正確性.

查看答案和解析>>

同步練習(xí)冊答案