【題目】已知圓,點是直線上的一動點,過點作圓的切線,切點為.
(1)當切線的長度為時,求線段PM長度.
(2)若的外接圓為圓,試問:當在直線上運動時,圓是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由;
(3)求線段長度的最小值.
科目:高中數學 來源: 題型:
【題目】經過市場調查,某種商品在銷售中有如下關系:第天的銷售價格(單位:元/件)為,第天的銷售量(單位:件)為(為常數),且在第20天該商品的銷售收入為1200元().
(Ⅰ)求的值,并求第15天該商品的銷售收入;
(Ⅱ)求在這30天中,該商品日銷售收入的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某縣政府為了引導居民合理用水,決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價:若用水量不超過12噸時,按4元/噸計算水費;若用水量超過12噸且不超過14噸時,超過12噸部分按6.60元/噸計算水費;若用水量超過14噸時,超過14噸部分按7.80元/噸計算水費.為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數據按照,,…,分成8組,制成了如圖1所示的頻率分布直方圖.
(圖1) (圖2)
(Ⅰ)通過頻率分布直方圖,估計該市居民每月的用水量的平均數和中位數(精確到0.01);
(Ⅱ)求用戶用水費用(元)關于月用水量(噸)的函數關系式;
(Ⅲ)如圖2是該縣居民李某2017年1~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是.若李某2017年1~7月份水費總支出為294.6元,試估計李某7月份的用水噸數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】相傳古代印度國王在獎賞他聰明能干的宰相達依爾(國際象棋發(fā)明者)時,問他需要什么,達依爾說:“國王只要在國際象棋棋盤的第一格子上放一粒麥子,第二格子上放二粒,第三格子上放四粒,以后按比例每一格加一倍,一直放到第64格(國際象棋棋盤格數是8×8=64),我就感恩不盡,其他什么也不要了.”國王想:“這才有多少,還不容易!”于是讓人扛來一袋小麥,但不到一會兒就用完了,再來一袋很快又沒有了,結果全印度的糧食用完還不夠,國王很奇怪,怎么也算不清這筆賬.請你設計一個程序框圖表示其算法,來幫國王計算一下需要多少粒小麥.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓M過點P(10,4),且與直線4x+3y-20=0相切于點A(2,4)
(1)求圓M的標準方程;
(2)設平行于OA的直線l與圓M相交于B、C兩點,且,求直線l的方程;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:方程x2+mx+1=0有兩個不相等的實根;
命題q:函數f(x)=lg[x2﹣2(m+1)x+m(m+1)]的定義域為R,
若“p∨q”為真,“p∧q”為假,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在等腰直角三角形中,,,、分別是,上的點,,為的中點,將沿折起,得到如圖2所示的四棱錐,其中.
(1)證明:平面;
(2)求二面角的平面角的余弦值;
(3)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com