【題目】如圖,四棱錐中,平面ABCD,底面ABCD是正方形,,E為PC上一點(diǎn),當(dāng)F為DC的中點(diǎn)時(shí),EF平行于平面PAD.
(Ⅰ)求證:平面PCB;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ)
【解析】
(Ⅰ)平面可得,從而證出平面,則,
從而可證出平面;
(Ⅱ)以點(diǎn)為坐標(biāo)原點(diǎn),分別以直線,,為軸,軸,軸,建立空間直角坐標(biāo)系,求得各點(diǎn)的坐標(biāo),求出平面和平面的的一個(gè)法向量,再根據(jù)法向量求出二面角.
(Ⅰ)證:平面,,
又正方形中,,,平面,
又平面,,
,當(dāng)為的中點(diǎn)時(shí),平行平面,所以是的中點(diǎn),
,,平面;
(Ⅱ)解:以點(diǎn)為坐標(biāo)原點(diǎn),分別以直線,,為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,
則,,,,,,
設(shè)平面的法向量為,則,,
,令,得到,,;
又,,,且平面,
平面的一個(gè)法向量為;
設(shè)二面角的平面角為,由圖可知角為銳角,
則,
二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)?/span>D的函數(shù)f(x),若存在區(qū)間[m,n]D,同時(shí)滿足下列條件:①f(x)在[m,n]上是單調(diào)的;②當(dāng)定義域是[m,n]時(shí),f(x)的值域也是[m,n],則稱[m,n]為該函數(shù)的“和諧區(qū)間”.下列函數(shù)存在“和諧區(qū)間”的有( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b,c為實(shí)數(shù),f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).記集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分別為集合S,T 的元素個(gè)數(shù),則下列結(jié)論不可能的是( )
A.{S}=1且{T}=0B.{S}=1且{T}=1C.{S}=2且{T}=2D.{S}=2且{T}=3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)P,Q分別是曲線y=xe﹣x(e是自然對(duì)數(shù)的底數(shù))和直線y=x+3上的動(dòng)點(diǎn),則P,Q兩點(diǎn)間距離的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y萬(wàn)元有如下的統(tǒng)計(jì)資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點(diǎn)圖并判斷是否線性相關(guān);
(2)如果線性相關(guān),求線性回歸方程;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?
附注:①參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為;
②參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果存在非零常數(shù),對(duì)于函數(shù)定義域上的任意,都有成立,那么稱函數(shù)為“函數(shù)”.
(Ⅰ)若,,試判斷函數(shù)和是否是“函數(shù)”?若是,請(qǐng)證明:若不是,主說(shuō)明理由:
(Ⅱ)求證:若是單調(diào)函數(shù),則它是“函數(shù)”;
(Ⅲ)若函數(shù)是“函數(shù)”,求實(shí)數(shù)滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入4萬(wàn)元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開(kāi)始計(jì)數(shù)的.
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)試估計(jì)該公司在若干地區(qū)各投入4萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:
廣告投入(單位:萬(wàn)元) | 1 | 2 | 3 | 4 | 5 |
銷售收益(單位:萬(wàn)元) | 2 | 3 | 3 | 7 |
由表中的數(shù)據(jù)顯示,與之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.(參考公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年?yáng)|京夏季奧運(yùn)會(huì)將設(shè)置米男女混合泳接力這一新的比賽項(xiàng)目,比賽的規(guī)則是:每個(gè)參賽國(guó)家派出2男2女共計(jì)4名運(yùn)動(dòng)員比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿米且由一名運(yùn)動(dòng)員完成, 每個(gè)運(yùn)動(dòng)員都要出場(chǎng). 現(xiàn)在中國(guó)隊(duì)確定了備戰(zhàn)該項(xiàng)目的4名運(yùn)動(dòng)員名單,其中女運(yùn)動(dòng)員甲只能承擔(dān)仰泳或者自由泳,男運(yùn)動(dòng)員乙只能承擔(dān)蝶泳或自由泳,剩下的男女各一名運(yùn)動(dòng)員則四種泳姿都可以上,那么中國(guó)隊(duì)共有( )種兵布陣的方式.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:內(nèi)有一點(diǎn),過(guò)的兩條直線,分別與拋物線交于,和,兩點(diǎn),且滿足,,已知線段的中點(diǎn)為,直線的斜率為.
(1)求證:點(diǎn)的橫坐標(biāo)為定值;
(2)如果,點(diǎn)的縱坐標(biāo)小于3,求的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com