【題目】設(shè)函數(shù)f(x)=(x﹣a)ex , a∈R. (Ⅰ)當a=1時,試求f(x)的單調(diào)增區(qū)間;
(Ⅱ)試求f(x)在[1,2]上的最大值;
(Ⅲ)當a=1時,求證:對于x∈[﹣5,+∞), 恒成立.
【答案】解:(Ⅰ)由f(x)=(x﹣a)ex得f'(x)=(x﹣a+1)ex.
當a=1時,f'(x)=xex,令f'(x)>0,得x>0,
所以f(x)的單調(diào)增區(qū)間為(0,+∞).
(Ⅱ)令f'(x)=0得x=a﹣1.
所以當a﹣1≤1時,x∈[1,2]時f'(x)≥0恒成立,f(x)單調(diào)遞增;
當a﹣1≥2時,x∈[1,2]時f'(x)≤0恒成立,f(x)單調(diào)遞減;
當1<a﹣1<2時,x∈[1,a﹣1)時f'(x)≤0,f(x)單調(diào)遞減;
x∈(a﹣1,2)時f'(x)>0,f(x)單調(diào)遞增.
綜上,無論a為何值,當x∈[1,2]時,f(x)最大值都為f(1)或f(2).
f(1)=(1﹣a)e,f(2)=(2﹣a)e2,
f(1)﹣f(2)=(1﹣a)e﹣(2﹣a)e2=(e2﹣e)a﹣(2e2﹣e).
所以當 時,f(1)﹣f(2)≥0,f(x)max=f(1)=(1﹣a)e.
當 時,f(1)﹣f(2)<0, .
(Ⅲ)令h(x)=f(x)+x,所以h'(x)=xex+1.
所以h'(x)=(x+1)ex.
令h'(x)=(x+1)ex=0,解得x=﹣1,
所以當x∈[﹣5,﹣1),h'(x)<0,h'(x)單調(diào)遞減;
當x∈[﹣1,+∞),h'(x)>0,h'(x)單調(diào)遞增.
所以當x=﹣1時, .
所以函數(shù)h(x)在[﹣5,+∞)單調(diào)遞增.
所以 .
所以x∈[﹣5,+∞), 恒成立
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,求出f(x)的最大值是f(1)或f(2),通過作差求出滿足f(1)或f(2)最大時a的范圍,從而求出f(x)的最大值;(Ⅲ)令h(x)=f(x)+x,根據(jù)函數(shù)的單調(diào)性求出h(x)的最小值,從而證明結(jié)論即可.
【考點精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A.消耗1升汽油,乙車最多可行駛5千米
B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C.甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D.某城市機動車最高限速80千米/小時.相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(0,+∞)的函數(shù)f(x),其導(dǎo)函數(shù)為f′(x),滿足:f(x)>0且 總成立,則下列不等式成立的是( )
A.e2e+3f(e)<e2ππ3f(π)
B.e2e+3f(π)>e2ππ3f(e)
C.e2e+3f(π)<e2ππ3f(e)
D.e2e+3f(e)>e2ππ3f(π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)滿足,定義域為的函數(shù)是奇函數(shù).
(1)求函數(shù)的解析式;
(2)若函數(shù)在上有零點,求的取值范圍;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E為對角線B1D上的一點,M,N為對角線AC上的兩個動點,且線段MN的長度為1.
⑴當N為對角線AC的中點且DE= 時,則三棱錐E﹣DMN的體積是;
⑵當三棱錐E﹣DMN的體積為 時,則DE= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市的中學(xué)生中隨機調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖.
(Ⅰ)求a的值;
(Ⅱ)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,估計該市中學(xué)生中的全體男生的平均身高;
(Ⅲ)從該市的中學(xué)生中隨機抽取一名男生,根據(jù)直方圖中的信息,估計其身高在180cm 以上的概率.若從全市中學(xué)的男生(人數(shù)眾多)中隨機抽取3人,用X表示身高在180cm以上的男生人數(shù),求隨機變量X的分布列和數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,若a=2,b=3,∠C=2∠A.
(I)求c的值;
(Ⅱ)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓M: +y2=1,圓C:x2+y2=6﹣a2在第一象限有公共點P,設(shè)圓C在點P處的切線斜率為k1 , 橢圓M在點P處的切線斜率為k2 , 則 的取值范圍為( )
A.(1,6)
B.(1,5)
C.(3,6)
D.(3,5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com