(本小題滿分12分)設是函數(shù)的兩個極
值點,其中.(Ⅰ) 求的取值范圍;
(Ⅱ) 若,求的最大值.

(I) . (II)的最大值是

解析試題分析:(Ⅰ)解:函數(shù)的定義域為,
依題意,方程有兩個不等的正根,(其中).故
,并且
所以,
的取值范圍是
(Ⅱ)解:當時,.若設,則
.于是有

構造函數(shù)(其中),則
所以上單調(diào)遞減,
的最大值是
考點:本題主要考查導數(shù)知識的運用,考查函數(shù)在某點取得極值的條件。
點評:本題通過導數(shù)在最大值、最小值問題中的應用,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知定義在實數(shù)集上的奇函數(shù)、)過已知點
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)試證明函數(shù)在區(qū)間是增函數(shù);若函數(shù)在區(qū)間(其中)也是增函數(shù),求的最小值;
(Ⅲ)試討論這個函數(shù)的單調(diào)性,并求它的最大值、最小值,在給出的坐標系(見答題卡)中畫出能體現(xiàn)主要特征的圖簡;
(Ⅳ)求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域;
(2)求函數(shù)的零點;
(3)若函數(shù)的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)處取得極值2。
(Ⅰ)求函數(shù)的表達式;
(Ⅱ)當滿足什么條件時,函數(shù)在區(qū)間上單調(diào)遞增?
(Ⅲ)若圖象上任意一點,直線與的圖象切于點P,求直線的斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題13分)已知函數(shù)。
(Ⅰ)若,試判斷并證明的單調(diào)性;
(Ⅱ)若函數(shù)上單調(diào),且存在使成立,求的取值范圍;
(Ⅲ)當時,求函數(shù)的最大值的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
定義在上的函數(shù),對于任意的實數(shù),恒有,且當時,
(1)求的值域。
(2)判斷上的單調(diào)性,并證明。
(3)設,,求的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)已知函數(shù)的一系列對應值如下表:

















(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的解析式;
(2)根據(jù)(1)的結果,若函數(shù)周期為,求在區(qū)間上的最大、最小值及對應的的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本題12分)
已知函數(shù).
(1)求的定義域;
(2)在函數(shù)的圖象上是否存在不同的兩點,使得過這兩點的直線平行于x軸;
(3)當,b滿足什么條件時,上恒取正值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分) 寫出已知函數(shù)  輸入的值,求y的值程序.

查看答案和解析>>

同步練習冊答案