11.圓x2+(y-1)2=4上點(diǎn)到曲線f(x)=-x3+3x2在點(diǎn)(1,f(1))處的切線的最遠(yuǎn)距離為( 。
A.$\frac{\sqrt{10}}{4}$B.$\frac{10+\sqrt{10}}{5}$C.$\frac{10-\sqrt{10}}{5}$D.$\frac{10+2\sqrt{10}}{5}$

分析 求出曲線f(x)=-x3+3x2在點(diǎn)(1,f(1))處的切線方程,圓心(0,1)到直線的距離,即可得出結(jié)論.

解答 解:由題意,f′(x)=-3x2+6x,∴f′(1)=3,
又f(1)=2,∴曲線f(x)=-x3+3x2在點(diǎn)(1,f(1))處的切線方程為3x-y-1=0,
圓心(0,1)到直線的距離為$\frac{2}{\sqrt{9+1}}$=$\frac{\sqrt{10}}{5}$,
∴圓x2+(y-1)2=4上點(diǎn)到曲線f(x)=-x3+3x2在點(diǎn)(1,f(1))處的切線的最遠(yuǎn)距離為2+$\frac{\sqrt{10}}{5}$,
故選:B.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查點(diǎn)到直線距離公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線y=mx+1與曲線x=2+$\sqrt{1-{y}^{2}}$的圖象始終有交點(diǎn),則m的取值范圍是( 。
A.(-1,0)B.[-1,0]C.(-1,-$\frac{1}{3}$)D.[-1,-$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρcos2θ=2sinθ,它在點(diǎn)$M(2\sqrt{2},\frac{π}{4})$處的切線為直線l.
(1)求直線l的直角坐標(biāo)方程;
(2)已知點(diǎn)P為橢圓$\frac{x^2}{3}+\frac{y^2}{4}$=1上一點(diǎn),求點(diǎn)P到直線l的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若△ABC的三個(gè)內(nèi)角滿足tanAtanBtanC>0,則△ABC是(  )
A.銳角三角形B.直角三角形C.鈍角三角形D.任意三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{3}=1(a>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2作x軸垂直的直線交雙曲線C于A、B兩點(diǎn),△F1AB的面積為12,拋物線E:y2=2px(p>0)以雙曲線C的右頂點(diǎn)為焦點(diǎn).
(Ⅰ)求拋物線E的方程;
(Ⅱ)如圖,點(diǎn)$P({-\frac{P}{2},t})({t≠0})$為拋物線E的準(zhǔn)線上一點(diǎn),過點(diǎn)PM
作y軸的垂線交拋物線于點(diǎn),連接PO并延長(zhǎng)交拋物線于點(diǎn)N,求證:直線MN過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.酒后違法駕駛機(jī)動(dòng)車危害巨大,假設(shè)駕駛?cè)藛T血液中的酒精含量為Q(簡(jiǎn)稱血酒含量,單位是毫克/100毫升),當(dāng)20≤Q≤80時(shí),為酒后駕車;當(dāng)Q>80時(shí),為醉酒駕車.如圖為某市交管部門在一次夜間行動(dòng)中依法查出的60名飲酒后違法駕駛機(jī)動(dòng)車者抽血檢測(cè)后所得頻率分布直方圖(其中120≤Q<140人數(shù)包含Q≥140).
( I)求查獲的醉酒駕車的人數(shù);
( II)從違法駕車的60人中按酒后駕車和醉酒駕車?yán)梅謱映闃映槿?人做樣本進(jìn)行研究,再?gòu)某槿〉?人中任取3人,求3人中含有醉酒駕車人數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.(x2-$\frac{1}{x}$)9的二項(xiàng)展開式中,含x3項(xiàng)的系數(shù)是-126.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下面使用類比推理正確的是(  )
A.由實(shí)數(shù)運(yùn)算“(ab)t=a(bt)”類比到“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)”
B.由實(shí)數(shù)運(yùn)算“(ab)t=at+bt”類比到“($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$”
C.由實(shí)數(shù)運(yùn)算“|ab|=|a||b|”類比到“|$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|”
D.由實(shí)數(shù)運(yùn)算“$\frac{ac}{bc}$=$\frac{a}$”類比到“$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow}$”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.二項(xiàng)展開式(2x-1)10中x的奇次冪項(xiàng)的系數(shù)之和為$\frac{1-{3}^{10}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案