【題目】已知函數(shù)f(x)=sin2x+acosx+x在點x= 處取得極值.
(1)求實數(shù)a的值;
(2)當x∈[﹣ , ]時,求函數(shù)f(x)的最大值.
【答案】
(1)解:f(x)=sin2x+acosx+x,
f′(x)=2cos2x﹣asinx+1,
f′( )=2cos ﹣asin +1=0,
解得:a=4
(2)解:由(1)得:f(x)=sin2x+4cosx+x,
f′(x)=2cos2x﹣4sinx+1=2﹣4sin2x﹣4sinx+1=﹣(2sinx+1)2+4,
令f′(x)>0,解得:﹣ <x< 或 <x< ,
令f′(x)<0,解得: <x< ,
∴f(x)在[﹣ , )遞增,在( , )遞減,在( , )遞增,
∴f(x)的最大值是f( )或f( ),
而f( )= ﹣2+ <f( )= + ,
故f(x)的最大值是f( )= +
【解析】(1)求出函數(shù)的導數(shù),根據(jù)f′( )=0,求出a的值即可;(2)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值即可.
【考點精析】關于本題考查的利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,平面平面,且.
(1)求證:平面;
(2)求和平面所成角的正弦值;
(3)在線段上是否存在一點使得平面平面,若存在,求出的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地電影院為了了解當?shù)赜懊詫煲嫌车囊徊侩娪暗钠眱r的看法,進行了一次調(diào)研,得到了票價x(單位:元)與渴望觀影人數(shù)y(單位:萬人)的結(jié)果如下表:
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
(2)根據(jù)(1)中求出的線性回歸方程,若票價定為70元,預測該電影院渴望觀影人數(shù).附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內(nèi)的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:
A:所以芒果以元/千克收購;
B:對質(zhì)量低于克的芒果以元/個收購,高于或等于克的以元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若函數(shù)在上為增函數(shù),求正實數(shù)的取值范圍;
(Ⅱ)若關于的方程在區(qū)間內(nèi)恰有兩個相異的實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a、b、c,已知a=csinB+bcosC.
(1)求A+C的值;
(2)若b= ,求△ABC面積的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓O外有一點P,作圓O的切線PM,M為切點,過PM的中點N,作割線NAB,交圓于A,B兩點,連接PA并延長,交圓O于點C,連續(xù)PB交圓O于點D,若MC=BC.
(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}的前n項和為Sn , a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}滿足b3=3,b5=9.
(1)分別求數(shù)列{an},{bn}的通項公式;
(2)設Cn= (n∈N*),求證Cn+1<Cn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com