【題目】給出下列四個(gè)命題:

映射不一定是函數(shù),但函數(shù)一定是其定義域到值域的映射;

函數(shù)的反函數(shù)是,則;

函數(shù)的最小值是;

對(duì)于函數(shù),則既是奇函數(shù)又是偶函數(shù).

其中所有正確命題的序號(hào)是( ).

A.①③B.②③C.①③④D.②③④

【答案】A

【解析】

①根據(jù)映與函數(shù)的定義即可判斷出其關(guān)系;②先得出的反函數(shù)是,再計(jì)算函數(shù)值即可;③利用基本不等式得結(jié)果;④根據(jù)函數(shù)的奇偶性定義判斷即可.

當(dāng)映射不是定義在數(shù)集上時(shí)就不是函數(shù),但函數(shù)一定是其定義域到值域的映射,故①正確;

的反函數(shù)是,則,所以,故②不正確;

函數(shù),當(dāng)且僅當(dāng)時(shí)取等號(hào),因此其最小值是,故③正確;

,解得:,

是奇函數(shù),不是偶函數(shù),故④不正確.

其中所有正確命題的序號(hào)是①③.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)設(shè)對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,中美貿(mào)易摩擦不斷.特別是美國(guó)對(duì)我國(guó)華為的限制.盡管美國(guó)對(duì)華為極力封鎖,百般刁難,并不斷加大對(duì)各國(guó)的施壓,拉攏他們抵制華為5G,然而這并沒有讓華為卻步.華為在2018年不僅凈利潤(rùn)創(chuàng)下記錄,海外增長(zhǎng)同樣強(qiáng)勁.今年,我國(guó)華為某一企業(yè)為了進(jìn)一步增加市場(chǎng)競(jìng)爭(zhēng)力,計(jì)劃在2020年利用新技術(shù)生產(chǎn)某款新手機(jī).通過市場(chǎng)分析,生產(chǎn)此款手機(jī)全年需投入固定成本250萬,每生產(chǎn)(千部)手機(jī),需另投入成本萬元,且 ,由市場(chǎng)調(diào)研知,每部手機(jī)售價(jià)0.7萬元,且全年內(nèi)生產(chǎn)的手機(jī)當(dāng)年能全部銷售完.

)求出2020年的利潤(rùn)(萬元)關(guān)于年產(chǎn)量(千部)的函數(shù)關(guān)系式,(利潤(rùn)=銷售額—成本);

2020年產(chǎn)量為多少(千部)時(shí),企業(yè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為坐標(biāo)原點(diǎn).下表給出坐標(biāo)的五個(gè)點(diǎn)中,有兩個(gè)點(diǎn)在上,另有兩個(gè)點(diǎn)在上. 則橢圓的方程為_____,的左焦點(diǎn)到的準(zhǔn)線之間的距離為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是菱形,交BD于點(diǎn),是邊長(zhǎng)為2的正三角形,分別是的中點(diǎn).

(1)求證:EF//平面SAD;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,動(dòng)物園要建造一面靠墻的2間面積相同的矩形熊貓居室,如果可供建造圍墻的材料總長(zhǎng)是36m。

1)把每間熊貓居室的面積s(單位:)表示為寬x(單位:m)的函數(shù),求函數(shù)的解析式,并寫出定義域;

2)當(dāng)寬為多少時(shí)才能使所建造的每間熊貓居室面積最大?每間熊貓居室最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2axxln x,且f(x)≥0.

(1)a

(2)證明:f(x)存在唯一的極大值點(diǎn)x0,且e2<f(x0)<22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)若時(shí),求的交點(diǎn)坐標(biāo);

(2)若上的點(diǎn)到距離的最大值為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)證明:上單調(diào)遞減;

2)已知單調(diào)遞增,記函數(shù)的最小值為.

①求的表達(dá)式;

②求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案