【題目】如圖,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,點B1在底面內(nèi)的射影恰好是BC的中點,且BC=CA=2.

(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值為 ,求斜三棱柱ABC﹣A1B1C1的側(cè)棱AA1的長度.

【答案】
(1)解:取BC中點M,連接B1M,則B1M⊥面ABC,

∴面BB1C1C⊥面ABC,

∵BC=面BB1C1C∩面ABC,AC⊥BC,

∴AC⊥面BB1C1C,

∵AC面ACC1A1∴面ACC1A1⊥面BCC1B1


(2)解:取BC的中點為M,AB的中點M,連接OM,MB1,

以MC為x軸,MO為y軸,MB1為z軸,建立空間直角坐標系.AC=BC=2,AB=2 ,設B1M=t,則A(1,2,0),B(﹣1,0,0),C(1,0,0),B1(0,0,t),C1(2,0,t),

=(﹣1,﹣2,t), =(﹣2,﹣2,0), =(2,0,0),

設平面AB1C1法向量 ,

,即 ,取 =

同理可得面AB1B法向量 =(1,﹣1,﹣ ).

= = ,

t4+29t2﹣96=0,

∴t= ,

∴BB1=2.


【解析】(1)利用線面垂直的性質(zhì)定理證明面面垂直(2)建立空間直角坐標系,寫出對應點的坐標,利用余弦值求得邊長.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖:設一正方形紙片ABCD邊長為2分米,切去陰影部分所示的四個全等的等腰三角形,剩余為一個正方形和四個全等的等腰三角形,沿虛線折起,恰好能做成一個正四棱錐(粘接損耗不計),圖中O為正四棱錐底面中心

若正四棱錐的棱長都相等,求這個正四棱錐的體積V;

設等腰三角形APQ的底角為x,試把正四棱錐的側(cè)面積S表示為x的函數(shù),并求S的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,經(jīng)過點且斜率為的直線與橢圓有兩個不同的交點

(1)求的取值范圍;

(2)設橢圓與軸正半軸、軸正半軸的交點分別為,是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方體ABCD—A1B1C1D1中,試在DD1確定一點P,使得直線BD1∥平面PAC,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓軸負半軸相交于點,與軸正半軸相交于點.

1)若過點的直線被圓截得的弦長為,求直線的方程;

2)若在以為圓心半徑為的圓上存在點,使得 (為坐標原點),求的取值范圍;

3)設是圓上的兩個動點,點關于原點的對稱點為,點關于軸的對稱點為,如果直線軸分別交于,問是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的右焦點為F,上頂點為A,短軸長為2,O為原點,直線AF與橢圓C的另一個交點為B,且△AOF的面積是△BOF的面積的3倍.
(1)求橢圓C的方程;
(2)如圖,直線l:y=kx+m與橢圓C相交于P,Q兩點,若在橢圓C上存在點R,使OPRQ為平行四邊形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】教育學家分析發(fā)現(xiàn)加強語文樂隊理解訓練與提高數(shù)學應用題得分率有關,某校興趣小組為了驗證這個結論,從該校選擇甲乙兩個同軌班級進行試驗,其中甲班加強閱讀理解訓練,乙班常規(guī)教學無額外訓練,一段時間后進行數(shù)學應用題測試,統(tǒng)計數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)

(1)經(jīng)過多次測試后,小明正確解答一道數(shù)學應用題所用的時

間在5—7分鐘,小剛正確解得一道數(shù)學應用題所用的時間在6—8

分鐘,現(xiàn)小明.小剛同時獨立解答同一道數(shù)學應用題,求小剛比

小明先正確解答完的概率;

(2)現(xiàn)從乙班成績優(yōu)秀的8名同學中任意抽取兩人,并對他們的答題情況進行全程研究,記A.B兩人中被抽到的人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】全國大學生機器人大賽是由共青團中央,全國學聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國最具影響力的機器人項目,是全球獨創(chuàng)的機器人競技平臺.全國大學生機器人大賽比拼的是參賽選手們的能力,堅持和態(tài)度,展現(xiàn)的是個人實力以及整個團隊的力量.2015賽季共吸引全國240余支機器人戰(zhàn)隊踴躍報名,這些參賽戰(zhàn)隊來自全國六大賽區(qū),150余所高等院校,其中不乏北京大學,清華大學,上海交大,中國科大,西安交大等眾多國內(nèi)頂尖高校,經(jīng)過嚴格篩選,最終由111支機器人戰(zhàn)隊參與到2015年全國大學生機器人大賽的激烈角逐之中,某大學共有“機器人”興趣團隊1000個,大一、大二、大三、大四分別有100,200,300,400個,為挑選優(yōu)秀團隊,現(xiàn)用分層抽樣的方法,從以上團隊中抽取20個團隊.

(1)應從大三抽取多少個團隊?

(2)將20個團隊分為甲、乙兩組,每組10個團隊,進行理論和實踐操作考試(共150分),甲、乙兩組的分數(shù)如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強化訓練,備戰(zhàn)機器人大賽.從統(tǒng)計學數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一直一艘船由島以海里/小時的速度往北偏東島形式,計劃到達島后停留分鐘后繼續(xù)以相同的速度駛往島.島在島的北偏西的方向上,島也也在島的北偏西的方向上.上午時整,該船從島出發(fā).上午分,該船到達處,此時測得島在北偏西的方向上.如果一切正常,此船何時能到達島?(精確到分鐘)

查看答案和解析>>

同步練習冊答案