【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都是40%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有一次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)作為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有一次命中的概率為( )
A.0.25
B.0.2
C.0.35
D.0.4
【答案】D
【解析】解:根據(jù)題意,因?yàn)?,2,3,4表示投籃命中,其它為不中,
當(dāng)三次投籃恰有一次命中時(shí),
就是三個(gè)數(shù)字xyz中只有一個(gè)數(shù)字在集合{1,2,3,4},
考查這20組數(shù)據(jù),以下8個(gè)數(shù)據(jù)符合題意,按次序分別為:
925,458,683,257,027,488,730,537,
所以,其概率P(A)= =0.4,
故選D.
當(dāng)三次投籃恰有一次命中時(shí),就是三個(gè)數(shù)字xyz中只有一個(gè)數(shù)字在集合{1,2,3,4},再逐個(gè)考察個(gè)數(shù)據(jù)即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,2AB=2AC=AA1 , 則異面直線BA1與B1C所成的角的余弦值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d不等于0,Sn是其前n項(xiàng)和,給出下列命題:
①給定n(n≥2,且n∈N*),對(duì)于一切k∈N*(k<n),都有an﹣k+an+k=2an成立;
②存在k∈N* , 使得ak﹣ak+1與a2k+1﹣a2k﹣3同號(hào);
③若d>0.且S3=S8 , 則S5與S6都是數(shù)列{Sn}中的最小項(xiàng)
④點(diǎn)(1, ),(2, ),(3, ),…,(n, )(n∈N*),…,在同一條直線上.
其中正確命題的序號(hào)是 . (把你認(rèn)為正確的命題序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為2的半圓有一內(nèi)接梯形ABCD,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上.若雙曲線以A、B為焦點(diǎn),且過C、D兩點(diǎn),則當(dāng)梯形ABCD的周長最大時(shí),雙曲線的實(shí)軸長為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域?yàn)閇a﹣1,2a],則( )
A. ,b=0
B.a=﹣1,b=0
C.a=1,b=1
D.a= ,b=﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且 =﹣ .
(1)求角B的大;
(2)若a+c=2,S△ABC= ,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5],
(1)當(dāng)a=﹣1時(shí),求函數(shù)的最大值和最小值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正數(shù)數(shù)列{xn}滿足x1= ,xn+1= ,n∈N* .
(1)求x2 , x4 , x6 .
(2)猜想數(shù)列{x2n}的單調(diào)性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (0<x<π),g(x)=(x﹣1)lnx+m(m∈R)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求證:1是g(x)的唯一極小值點(diǎn);
(Ⅲ)若存在a,b∈(0,π),滿足f(a)=g(b),求m的取值范圍.(只需寫出結(jié)論)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com