【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且 =﹣ .
(1)求角B的大;
(2)若a+c=2,S△ABC= ,求b的值.
【答案】
(1)解:在△ABC中,∵ =﹣ ,由正弦定理可得: =﹣ .
化為:2sinAcosB+sinCcosB+cosCsinB=0,
2sinAcosB+sin(C+B)=0,
∴2sinAcosB+sinA=0,
∵sinA≠0,
∴cosB=﹣ ,又B∈(0,π),∴B=
(2)解:∵ = ,
∴ac=1.
∴b2=a2+c2﹣2accosB=a2+c2+ac=(a+c)2﹣ac=3,
∴ .
【解析】(1)利用正弦定理、和差公式即可得出;(2)利用三角形面積計算公式、余弦定理即可得出.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關知識點,需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是正方形,PA⊥底面ABCD,PA=AD,點M是PD的中點,作ME⊥PC,交PC于點E.
(1)求證:PB∥平面MAC;
(2)求證:PC⊥平面AEM;
(3)求二面角A﹣PC﹣D的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax+ 的圖象經(jīng)過點A(1,1),B(2,﹣1).
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并用定義證明;
(3)求f(x)在區(qū)間[ ,1]上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都是40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有一次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)作為一組,代表三次投籃的結果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.據(jù)此估計,該運動員三次投籃恰有一次命中的概率為( )
A.0.25
B.0.2
C.0.35
D.0.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|0≤x≤2},B={y|1≤y≤2},若對于函數(shù)y=f(x),其定義域為A,值域為B,則這個函數(shù)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)在定義域(0,+∞)上為增函數(shù),且滿足f(xy)=f(x)+f(y),f(3)=1.
(1)求f(9),f(27)的值;
(2)解不等式f(x)+f(x﹣8)<2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn , 已知a1=1,Sn+1=4an+2(n∈N*).
(1)設bn=an+1﹣2an , 證明數(shù)列{bn}是等比數(shù)列(要指出首項、公比);
(2)若cn=nbn , 求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com