18.函數(shù)y=(m2-m-1)x${\;}^{{m}^{2}-2m-3}$是冪函數(shù)且在(0,+∞)上單調(diào)遞減,則實(shí)數(shù)m的值為2.

分析 根據(jù)函數(shù)y是冪函數(shù),列出方程求出m的值,再判斷函數(shù)y在(0,+∞)上是否單調(diào)遞減即可.

解答 解:函數(shù)y=(m2-m-1)x${\;}^{{m}^{2}-2m-3}$是冪函數(shù),
∴m2-m-1=1,
解得m=2或m=-1;
當(dāng)m=2時(shí),m2-2m-3=-3,
函數(shù)y=x-3在(0,+∞)上單調(diào)遞減,滿足題意;
當(dāng)m=-1時(shí),m2-2m-3=0,
函數(shù)y=x0不滿足題意;
綜上,實(shí)數(shù)m的值為2.
故答案為:2.

點(diǎn)評(píng) 本題考查了冪函數(shù)的定義與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合M={x|(x-3)(x+1)≥0},N={x|-2≤x≤2},則M∩N=( 。
A.[-2,-1]B.[-1,2]C.[-1,1]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{6}}}{3}$,以M(1,0)為圓心,橢圓的短半軸長為半徑的圓與直線$x-y+\sqrt{2}-1=0$相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)N(3,2),過點(diǎn)M任作直線l與橢圓C相交于A,B兩點(diǎn),設(shè)直線AN,BN的斜率分別為k1,k2,請(qǐng)問 k1+k2是否為定值?如果是求出該值,如果不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|2≤x≤6},集合B={x|3x-7≥8-2x}.
(1)求∁R(A∩B);
(2)若C={x|x≤a},且A∪C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|x2-px-2=0},B={x|x2+qx+r=0},若A∪B={-2,1,5},A∩B={-2},求p+q+r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知P(1,3-a),Q(-a,2),且向量|$\overrightarrow{PQ}$|=2,則實(shí)數(shù)a的值是±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列四個(gè)命題中真命題是( 。
A.同垂直于一直線的兩條直線互相平行
B.底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱
C.過空間任一點(diǎn)與兩條異面直線都垂直的直線有且只有一條
D.過球面上任意兩點(diǎn)的大圓有且只有一個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=sin(ωx-$\frac{3π}{4}$)(ω>0)的最小值正周期為π
(1)求ω;
(2)若f($\frac{α}{2}$+$\frac{3π}{8}$)=$\frac{24}{25}$,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$),求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=-x2-3,g(x)=2xlnx-ax且函數(shù)f(x)與g(x)在x=1處的切線平行.
(Ⅰ)求函數(shù)g(x)在(1,g(1))處的切線方程;
(Ⅱ)當(dāng)x∈(0,+∞)時(shí),g(x)-f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案