7.設(shè)函數(shù)f(x)=sin(ωx-$\frac{3π}{4}$)(ω>0)的最小值正周期為π
(1)求ω;
(2)若f($\frac{α}{2}$+$\frac{3π}{8}$)=$\frac{24}{25}$,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$),求tanα的值.

分析 (1)由已知利用三角函數(shù)周期公式即可計算得解.
(2)由(1)可得:f(x)=sin(2x-$\frac{3π}{4}$),由已知可求sinα,利用同角三角函數(shù)基本關(guān)系式可求cosα,進而可求tanα=$\frac{sinα}{cosα}$的值.

解答 解:(1)∵f(x)=sin(ωx-$\frac{3π}{4}$)(ω>0)的最小值正周期為π,即:$\frac{2π}{ω}$=π,
∴ω=2,
(2)由(1)可得:f(x)=sin(2x-$\frac{3π}{4}$),
∴f($\frac{α}{2}$+$\frac{3π}{8}$)=sin[2($\frac{α}{2}$+$\frac{3π}{8}$)-$\frac{3π}{4}$]=sinα=$\frac{24}{25}$,
∵α∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{7}{25}$.
∴tanα=$\frac{sinα}{cosα}$=$\frac{24}{7}$.

點評 本題主要考查了三角函數(shù)周期公式,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若tan$\frac{π}{12}$cos$\frac{5π}{12}$=sin$\frac{5π}{12}$-msin$\frac{π}{12}$,則實數(shù)m的值為(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=(m2-m-1)x${\;}^{{m}^{2}-2m-3}$是冪函數(shù)且在(0,+∞)上單調(diào)遞減,則實數(shù)m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)$y=sin\frac{1}{2}x$的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,在平行四邊形ABCD中,$\overrightarrow{AB}+\overrightarrow{AD}$=( 。
A.$\overrightarrow{AC}$B.$\overrightarrow{CA}$C.$\overrightarrow{BD}$D.$\overrightarrow{DB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.三個數(shù)a=0.412,b=log20.41,c=20.41之間的大小關(guān)系為(  )
A.a<c<bB.a<b<cC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=ax+\frac{x}$(其中a,b為常數(shù))的圖象經(jīng)過(1,2),$({2\;,\;\;\frac{5}{2}})$兩點.
(1)求函數(shù)f(x)的解析式;
(2)證明函數(shù)f(x)在(1,+∞)是增函數(shù);
(3)若不等式$\frac{{{{25}^m}}}{3}-{5^m}≥f(x)$對任意$x∈[{\frac{1}{2}\;,\;\;3}]$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將函數(shù)y=cos(2x+$\frac{π}{4}$)的圖象沿x軸向右平移φ(φ>0)個單位,得到一個偶函數(shù)的圖象,則φ的一個可能取值為( 。
A.$\frac{π}{16}$B.$\frac{π}{8}$C.$\frac{π}{4}$D.$\frac{3π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題“?x≥0且x∈R,2x>x2”的否定是( 。
A.?x0≥0且x0∈R,${2^{x_0}}>{x_0}^2$B.?x≥0且x∈R,2x≤x2
C.?x0≥0且x0∈R,${2^{x_0}}≤{x_0}^2$D.?x0<0且x0∈R,${2^{x_0}}≤{x_0}^2$

查看答案和解析>>

同步練習(xí)冊答案