三棱錐O-ABC的頂點(diǎn)在空間直角坐標(biāo)系O-xyz中的坐標(biāo)分別是O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),則點(diǎn)C到平面OAB的距離為( 。
A、
2
3
3
B、
3
2
C、
6
3
D、
2
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專題:空間向量及應(yīng)用
分析:求出法向量設(shè)
n
=(x,y,z),平面ABO的法向量,
x+z=0
x+y=0
,運(yùn)用點(diǎn)C到平面OAB的距離為:
|
n
OC
|
|
n
|
,求解即可.
解答: 解:∵O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),
OA
=(1,0,1),
OB
=(1,1,0),
OC
=(0,1,1),
設(shè)
n
=(x,y,z),平面ABO的法向量,
x+z=0
x+y=0
,
令x=1,y=-1,z=-1,
n
=(1,-1,-1),
n
OC
=-2,|
n
|=
3

∴點(diǎn)C到平面OAB的距離為:
|
n
OC
|
|
n
|
=
2
3
=
2
3
3
,
故選:A
點(diǎn)評(píng):本題考查了空間向量的運(yùn)用求解空間距離問(wèn)題,屬于中檔題,計(jì)算要準(zhǔn)確.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(sinx)=cos2010x,則f(cosx)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

游樂(lè)場(chǎng)中的摩天輪勻速旋轉(zhuǎn)每轉(zhuǎn)一圈需要12分鐘,其中心O距地面40.5米,摩天輪的半徑為40米,如果你從最低處登上摩天輪,那么你與地面的距離將隨時(shí)間的變化而變化,以你登上摩天輪的時(shí)刻開始計(jì)時(shí).
(1)求出你與地面的距離y(米)與時(shí)間t(分鐘)的函數(shù)關(guān)系式;
(2)當(dāng)你第四次距離地面60.5米時(shí),用了多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BC=1,AA1=1(利用空間向量求解及證明).
(1)求直線AD1與B1D所成角;
(2)證明:BD1⊥B1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2+ax+4=0.求下列條件下a的取值范圍.
(1)若關(guān)于x的方程在[-1,5)上有解.
(2)若關(guān)于x的方程在[-1,5)上無(wú)解.
(3)若關(guān)于x的方程在[-1,5)上只有一解.
(4)若關(guān)于x的方程在[-1,5)有兩個(gè)不同的實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
(1)“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
(2)對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x)且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí),f′(x)>g′(x);
(3)函數(shù)f(x)=loga
3+x
3-x
(a>0,a≠1)是偶函數(shù);
(4)若
a
b
=
b
c
b
0
,則
a
=
c

其中真命題的個(gè)數(shù)是為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是(  )
A、命題“若x=1則x2=1”的否命題為“若x2≠1,則x≠1”
B、命題“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1>0”
C、“x=y”是“sinx=siny”的充分不必要條件
D、“命題p,q中至少有一個(gè)為真命題”是“p或q為真命題”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
x+3
x-1
≥-1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以N(1,3)為圓心且截直線3x-4y-11=0的弦長(zhǎng)為6的圓為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案