【題目】如圖,在平面直角坐標(biāo)系中,已知是橢圓上的一點(diǎn),從原點(diǎn)向
圓作兩條切線,分別交橢圓于點(diǎn).
(1)若點(diǎn)在第一象限,且直線互相垂直,求圓的方程;
(2)若直線的斜率存在,并記為,求的值;
(3)試問是否為定值?若是,求出該值;若不是,說明理由.
【答案】(1);(2);(3).
【解析】
試題分析:(1)由圓的方程可知,圓的半徑,,由此可求出圓的方程;(2)由已知得直線和都與圓相切,化簡(jiǎn)可得,再利用點(diǎn)在橢圓上,即可求解的值;(3)當(dāng)直線不落在坐標(biāo)軸上時(shí),設(shè),利用直線方程與橢圓的方程聯(lián)立方程組,得出,同理,由此可求解為定值.
試題解析:(1)由圓的方程知圓的半徑,因?yàn)橹本,互相垂直,且和圓相切,所以,即 ①
又點(diǎn)在橢圓上,所以 ②
聯(lián)立①②,解得,所以,所求圓的方程為.
(2)因?yàn)橹本和都與圓相切,所以,,化簡(jiǎn)得,因?yàn)辄c(diǎn)在橢圓上,所以,即,所以.
(3)方法一(1)當(dāng)直線,不落在坐標(biāo)軸上時(shí),設(shè),,
由(2)知,所以,故.因?yàn)?/span>,在橢圓上,所以,,
即,,所以,
整理得,所以
所以.
方法(二)(1)當(dāng)直線,不落在坐標(biāo)軸上時(shí),設(shè),,
聯(lián)立,解得,,所以,
同理,得.由(2),得,
所以
.
(2)當(dāng)直線,落在坐標(biāo)軸上時(shí),顯然有.
綜上:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,是的中點(diǎn),,.
(1)求證:平面;
(2)若,點(diǎn)在側(cè)棱上,且,二面角的大小為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲是某商店2018年(按360天計(jì)算)的日盈利額(單位:萬元)的統(tǒng)計(jì)圖.
(1)請(qǐng)計(jì)算出該商店2018年日盈利額的平均值(精確到0.1,單位:萬元):
(2)為了刺激消費(fèi)者,該商店于2019年1月舉行有獎(jiǎng)促銷活動(dòng),顧客凡購(gòu)買一定金額的高品后均可參加抽獎(jiǎng).隨著抽獎(jiǎng)活動(dòng)的有效開展,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來越多,該商店對(duì)前5天抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì)如下表:(表示第天參加抽獎(jiǎng)活動(dòng)的人數(shù))
1 | 2 | 3 | 4 | 5 | |
50 | 60 | 70 | 80 | 100 |
經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(ⅰ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程:
(ⅱ)該商店采取轉(zhuǎn)盤方式進(jìn)行抽獎(jiǎng)(如圖乙),其中轉(zhuǎn)盤是個(gè)八等分的圓.每位顧客最多兩次抽獎(jiǎng)機(jī)會(huì),若第一次抽到獎(jiǎng),則抽獎(jiǎng)終止,若第一次未抽到獎(jiǎng),則再提供一次抽獎(jiǎng)機(jī)會(huì).抽到一等獎(jiǎng)的獎(jiǎng)品價(jià)值128元,抽到二等獎(jiǎng)的獎(jiǎng)品價(jià)值32元.若該商店此次抽獎(jiǎng)活動(dòng)持續(xù)7天,試估計(jì)該商店在此次抽獎(jiǎng)活動(dòng)結(jié)束時(shí)共送出價(jià)值為多少元的獎(jiǎng)品(精確到0.1,單位:萬元)?
(3)用(1)中的2018年日盈利額的平均值去估計(jì)當(dāng)月(共31天)每天的日盈利額.若商店每天的固定支出約為1000元,促銷活動(dòng)日的日盈利額比平常增加20%,則該商店當(dāng)月的純利潤(rùn)約為多少萬元?(精確到0.1,純利潤(rùn)=盈利額-固定支出-抽獎(jiǎng)總獎(jiǎng)金數(shù))
參考公式及數(shù)據(jù):,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,對(duì)任意,點(diǎn)都在函數(shù) 的圖象上.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列,求數(shù)列的前項(xiàng)和;
(3)已知數(shù)列滿足,若對(duì)任意,存在使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,對(duì)任意,點(diǎn)都在函數(shù)的圖象上.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列,求數(shù)列的前項(xiàng)和;
(3)已知數(shù)列滿足,若對(duì)任意,存在使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,過的直線交橢圓、兩點(diǎn),若的最大值為5,則b的值為( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保障全國(guó)第四次經(jīng)濟(jì)普查順利進(jìn)行,國(guó)家統(tǒng)計(jì)局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國(guó)家綜合試點(diǎn)地區(qū),然后再逐級(jí)確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對(duì)象,最后入戶登記. 由于種種情況可能會(huì)導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn). 在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個(gè)體經(jīng)營(yíng)戶,普查情況如下表所示:
普查對(duì)象類別 | 順利 | 不順利 | 合計(jì) |
企事業(yè)單位 | 40 | 10 | 50 |
個(gè)體經(jīng)營(yíng)戶 | 100 | 50 | 150 |
合計(jì) | 140 | 60 | 200 |
(1)寫出選擇 5 個(gè)國(guó)家綜合試點(diǎn)地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對(duì)象的類別有關(guān)”;
(3)以頻率作為概率, 某普查小組從該小區(qū)隨機(jī)選擇 1 家企事業(yè)單位,3 家個(gè)體經(jīng)營(yíng)戶作為普查對(duì)象,入戶登記順利的對(duì)象數(shù)記為, 寫出的分布列,并求的期望值.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.88 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形,側(cè)面底面,,,是中點(diǎn),為的中點(diǎn),點(diǎn)在側(cè)棱上(不包括端點(diǎn)).
(1)求證:
(2)是否存在點(diǎn),使與平面所成角的正弦值為,若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com