考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,證明題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)f(x)=xlnx-ax
2(x>0),f′(x)=lnx+1-2ax.令g(x)=lnx+1-2ax,由于函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn)?g(x)=0在區(qū)間(0,+∞)上有兩個(gè)實(shí)數(shù)根.g′(x)=
-2a.當(dāng)a≤0時(shí),直接驗(yàn)證;當(dāng)a>0時(shí),利用導(dǎo)數(shù)研究函數(shù)g(x)的單調(diào)性可得:當(dāng)x=
,函數(shù)g(x)取得極大值,故要使g(x)有兩個(gè)不同解,只需要g(
)>0,解得即可;
(Ⅱ)設(shè)函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn)為x
1,x
2,且0<x
1<
<x
2,f′(x
1)=lnx
1+1-2ax
1=0,f′(x
2)=lnx
2+1-2ax
2=0.求出f(x
1)和f(x
2),化簡(jiǎn)并運(yùn)用不等式的性質(zhì),即可得證.
解答:
(Ⅰ)解:f(x)=xlnx-ax
2(x>0),f′(x)=lnx+1-2ax.
令g(x)=lnx+1-2ax,
∵函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn),
則g(x)=0在區(qū)間(0,+∞)上有兩個(gè)實(shí)數(shù)根.
g′(x)=
-2a=
,
當(dāng)a≤0時(shí),g′(x)>0,則函數(shù)g(x)在區(qū)間(0,+∞)單調(diào)遞增,
因此g(x)=0在區(qū)間(0,+∞)上不可能有兩個(gè)實(shí)數(shù)根,應(yīng)舍去.
當(dāng)a>0時(shí),令g′(x)=0,解得x=
.
令g′(x)>0,解得0
<x<,此時(shí)函數(shù)g(x)單調(diào)遞增;
令g′(x)<0,解得x
>,此時(shí)函數(shù)g(x)單調(diào)遞減.
∴當(dāng)x=
時(shí),函數(shù)g(x)取得極大值.
當(dāng)x趨近于0與x趨近于+∞時(shí),g(x)→-∞,
要使g(x)=0在區(qū)間(0,+∞)上有兩個(gè)實(shí)數(shù)根,則g(
)=ln
>0,解得0<a<
.
∴實(shí)數(shù)a的取值范圍是(0,
);
(Ⅱ)證明:設(shè)函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn)為x
1,x
2,(x
1<x
2),
∵0<x
1<
<x
2,f′(x
1)=lnx
1+1-2ax
1=0,f′(x
2)=lnx
2+1-2ax
2=0.
且f(x
1)=x
1(lnx
1-ax
1)=x
1(2ax
1-1-ax
1)=x
1(ax
1-1)<x
1(-ax
1)=-ax
12<0,
f(x
2)=x
2(lnx
2-ax
2)=x
2(ax
2-1)>1×(a×
-1)=-
.(
>1).
故f(x)的極大值大于-
.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,考查了等價(jià)轉(zhuǎn)化方法,考查了推理能力和計(jì)算能力,屬于難題.