【題目】在統(tǒng)計(jì)學(xué)中,偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某科考試成績(jī)與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對(duì)學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行學(xué)科偏差分析,決定從全班56位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績(jī)偏差數(shù)據(jù)如下:
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)偏差 | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差 | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(1)已知與之間具有線(xiàn)性相關(guān)關(guān)系,求關(guān)于的線(xiàn)性回歸方程;
(2)若這次考試該班數(shù)學(xué)平均分為118分,物理平均分為90.5,試預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的物理成績(jī).
參考公式: , ,
參考數(shù)據(jù): , .
【答案】(1)(2)預(yù)測(cè)這位同學(xué)的物理成績(jī)?yōu)?/span>分.
【解析】(Ⅰ)由題意, ,
,
,
所以,
故線(xiàn)性回歸方程為.
(Ⅱ)由題意,設(shè)該同學(xué)的物理成績(jī)?yōu)?/span>,則物理偏差為: .
而數(shù)學(xué)偏差為,
則(Ⅰ)的結(jié)論可得,
,解得,
所以,可以預(yù)測(cè)這位同學(xué)的物理成績(jī)?yōu)?/span>分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=(2x﹣3)n展開(kāi)式的二項(xiàng)式系數(shù)和為512,且(2x﹣3)n=a0+a1(x﹣1)+a2(x﹣1)2+…+an(x﹣1)n
(1)求a2的值;
(2)求a1+a2+a3+…+an的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)計(jì)劃派出名女生, 名男生去參加某項(xiàng)活動(dòng),若實(shí)數(shù), 滿(mǎn)足約束條件則該中學(xué)最多派__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿(mǎn)足f(x)= ,且f(x)=f(x+2),g(x)= ,則方程g(x)=f(x)﹣g(x)在區(qū)間[﹣3,7]上的所有零點(diǎn)之和為( )
A.12
B.11
C.10
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)函數(shù)的圖象與軸交于兩點(diǎn), ,點(diǎn)在函數(shù)的圖象上,且為等腰直角三角形,記,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知分別是橢圓 的長(zhǎng)軸與短軸的一個(gè)端點(diǎn), 分別是橢圓的左、右焦點(diǎn), 橢圓上的一點(diǎn), 的周長(zhǎng)為.
(1)求橢圓的方程;
(2)若是圓上任一點(diǎn),過(guò)點(diǎn)作橢圓的切線(xiàn),切點(diǎn)分別為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4x﹣a2x+1+a+1,a∈R.
(1)當(dāng)a=1時(shí),解方程f(x)﹣1=0;
(2)當(dāng)0<x<1時(shí),f(x)<0恒成立,求a的取值范圍;
(3)若函數(shù)f(x)有零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C對(duì)邊的邊長(zhǎng)分別是a,b,c,已知c=2,C= .
(Ⅰ)若△ABC的面積等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面為平行四邊形,M為PC中點(diǎn).
(1)求證:BC∥平面PAD;
(2)求證:AP∥平面MBD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com