【題目】已知分別是橢圓 的長(zhǎng)軸與短軸的一個(gè)端點(diǎn), 分別是橢圓的左、右焦點(diǎn), 橢圓上的一點(diǎn), 的周長(zhǎng)為.
(1)求橢圓的方程;
(2)若是圓上任一點(diǎn),過(guò)點(diǎn)作橢圓的切線,切點(diǎn)分別為,求證: .
【答案】(1);(2)見(jiàn)解析.
【解析】試題分析:(1)根據(jù)題意求解即可;
(2)討論切線的斜率不存在或?yàn)榱銜r(shí)和點(diǎn)切線斜率存在且不為零時(shí),設(shè)切線的方程為的方程為,分析條件可得是方程的兩個(gè)根,利用韋達(dá)定理可得進(jìn)而證得結(jié)論成立.
試題解析:
(1)由的周長(zhǎng)為,得,由,得,又.故橢圓的方程為.
(2) ① 當(dāng)切線的斜率不存在或?yàn)榱銜r(shí),此時(shí)取,顯然直線與直線恰是橢圓的兩條切線.由圓及橢圓的對(duì)稱性,可知.
②點(diǎn)切線斜率存在且不為零時(shí),設(shè)切線的方程為的方程為,由,消,得,
與橢圓相切, .
.即;同理:切線中, , 是方程的兩個(gè)根,又在圓上, .
綜上所述: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四組函數(shù)中,表示同一函數(shù)的是( )
A.f(x)=|x|,g(x)=
B.f(x)=lg x2 , g(x)=2lg x
C.f(x)= ,g(x)=x+1
D.f(x)= ? ,g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{bn}(bn>0)的首項(xiàng)為1,且前n項(xiàng)和Sn滿足Sn﹣Sn﹣1= + (n≥2).
(1)求{bn}的通項(xiàng)公式;
(2)若數(shù)列{ }前n項(xiàng)和為Tn , 問(wèn)Tn> 的最小正整數(shù)n是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長(zhǎng)為2的正三角形,頂點(diǎn)在上的射影為點(diǎn),且, , .
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在統(tǒng)計(jì)學(xué)中,偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某科考試成績(jī)與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對(duì)學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行學(xué)科偏差分析,決定從全班56位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績(jī)偏差數(shù)據(jù)如下:
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)偏差 | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差 | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(1)已知與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)若這次考試該班數(shù)學(xué)平均分為118分,物理平均分為90.5,試預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的物理成績(jī).
參考公式: , ,
參考數(shù)據(jù): , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 已知a1=10,a2為整數(shù),且Sn≤S4 , 設(shè) ,則數(shù)列{bn}的前項(xiàng)和Tn為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)圓心角為直角的扇形花草房,半徑為1,點(diǎn)是花草房弧上一個(gè)動(dòng)點(diǎn),不含端點(diǎn),現(xiàn)打算在扇形內(nèi)種花, ,垂足為, 將扇形分成左右兩部分,在左側(cè)部分三角形為觀賞區(qū),在右側(cè)部分種草,已知種花的單位面積的造價(jià)為,種草的單位面積的造價(jià)為2,其中為正常數(shù),設(shè),種花的造價(jià)與種草的造價(jià)的和稱為總造價(jià),不計(jì)觀賞區(qū)的造價(jià),總造價(jià)為
求關(guān)于的函數(shù)關(guān)系式;
求當(dāng)為何值時(shí),總造價(jià)最小,并求出最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)△ABC所在平面α外一點(diǎn)P,作PO⊥α,垂足為O,連接PA,PB,PC,若點(diǎn)O是△ABC的內(nèi)心,則( )
A.PA=PB=PC
B.點(diǎn)P到AB,BC,AC的距離相等
C.PA⊥PB,PB⊥PC,PC⊥PA
D.PA,PB,PC與平面α所成的角相等
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com