【題目】等差數(shù)列{an}的前n項和為Sn , 已知a1=10,a2為整數(shù),且Sn≤S4 , 設(shè) ,則數(shù)列{bn}的前項和Tn為(
A.
B.
C.
D.

【答案】B
【解析】解:設(shè)等差數(shù)列{an}的公差為d,∵等差數(shù)列{an}的前項和為Sn , 且Sn≤S4 , ∴S4為其前項和中的最大值,
,
又a1=10,
,解得:﹣ ≤d<﹣ ,又a2為整數(shù),
∴公差d=a2﹣a1為整數(shù),
∴d=﹣3.
∴an=10+(n﹣1)×(﹣3)=13﹣3n.
= = ),
∴Tn=b1+b2+…+bn= + +…+ )= )=
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)=
(1)在下列直角坐標系中畫出f(x)的圖象;

(2)若f(x)=3,求x的值;
(3)看圖象寫出函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=aex﹣x﹣1,a∈R.
(Ⅰ)當a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)當x∈(0,+∞)時,f(x)>0恒成立,求a的取值范圍;
(Ⅲ)求證:當x∈(0,+∞)時,ln

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,點是圓上的任意一點,設(shè)為該圓的圓心,并且線段的垂直平分線與直線交于點.

(1)求點的軌跡方程;

(2)已知兩點的坐標分別為, ,點是直線上的一個動點,且直線分別交(1)中點的軌跡于兩點(四點互不相同),證明:直線恒過一定點,并求出該定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知分別是橢圓 的長軸與短軸的一個端點, 分別是橢圓的左、右焦點, 橢圓上的一點, 的周長為.

(1)求橢圓的方程;

(2)若是圓上任一點,過點作橢圓的切線,切點分別為,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直角坐標系中,曲線軸負半軸交于點,直線相切于 上任意一點, 上的射影, 的中點.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)軌跡軸交于,點為曲線上的點,且 ,試探究三角形的面積是否為定值,若為定值,求出該值;若非定值,求其取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且 ,
(Ⅰ)求sinB的值;
(Ⅱ)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sin2x的圖象向左平移 個單位,再向上平移1個單位,所得圖象的函數(shù)解析式是(
A.y=cos2x
B.y=2cos2x
C.
D.y=2sin2x?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩點A(﹣2,0),B(0,2),點C是圓x2+y2﹣2x=0上的任意一點,則△ABC的面積最小值是

查看答案和解析>>

同步練習冊答案