【題目】給出下列命題:
①已知,是正數,且,則;
②命題“,使得”的否定是真命題;
③將化成二進位制數是;
④某同學研究變量,之間的相關關系,并求得回歸直線方程,他得出一個結論:與 負相關且,
其中正確的命題的序號是__________(把你認為正確的序號都填上).
科目:高中數學 來源: 題型:
【題目】小明每天上學都需要經過一個有交通信號燈的十字路口.已知十字路口的交通信號燈綠燈亮的時間為40秒,黃燈5秒,紅燈45秒.如果小明每天到路口的時間是隨機的,則小明上學時到十字路口需要等待的時間不少于20秒的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有8張卡片分別標有數字1,2,3,4,5,6,7,8,從中取出6張卡片排成3行2列,要求3行中僅有中間行的兩張卡片上的數字之和為5,則不同的排法共有__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,·=0,||=12,||=15,l為線段BC的垂直平分線,l與BC交于點D,E為l上異于D的任意一點.
(1)求·的值;
(2)判斷·的值是否為一個常數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若α是第一象限角,則sinα+cosα的值與1的大小關系是( )
A. sinα+cosα>1B. sinα+cosα=1C. sinα+cosα<1D. 不能確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子中有四個小球,分別寫有“美、麗、中、國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機模擬的方法估計恰好在第三次停止的概率.利用電腦隨機產生0到3之間取整數值的隨機數,分別用0,1,2,3代表“中、國、美、麗”這四個字,以每三個隨機數為一組,表示取球三次的結果,經隨機模擬產生了以下18組隨機數:
232 321 230 023 123 021 132 220 001
231 130 133 231 031 320 122 103 233
由此可以估計,恰好第三次就停止的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸正半軸為極軸建立極坐標系,橢圓的極坐標方程為,其左焦點在直線上.
(1)若直線與橢圓交于兩點,求的值;
(2)求橢圓的內接矩形面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足時按計算)需再收5元.公司從承攬過的包裹中,隨機抽取100件,其重量統(tǒng)計如下:
包裹重量(單位:) | |||||
包裹件數 | 43 | 30 | 15 | 8 | 4 |
公司又隨機抽取了60天的攬件數,得到頻數分布表如下:
攬件數 | |||||
天數 | 6 | 6 | 30 | 12 | 6 |
以記錄的60天的攬件數的頻率作為各攬件數發(fā)生的概率
(1)計算該公司3天中恰有2天攬件數在的概率;
(2)估計該公司對每件包裹收取的快遞費的平均值;
(3)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用做其他費用,目前前臺有工作人員3人,每人每天攬件不超過150件,每人每天工資100元,公司正在考慮是否將前臺工作人員裁減1人,試計算裁員前后公司每日利潤的數學期望,并判斷裁員是否對提高公司利潤有利?
(注:同一組中的攬件數以這組數據所在區(qū)間中點值作代表)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com