【題目】已知函數(shù)f(x)=ln(x+1)-x.
⑴求函數(shù)f(x)的單調(diào)遞減區(qū)間;
⑵若,證明:.
【答案】⑴(0,+∞);⑵證明見詳解
【解析】
第一問利用導(dǎo)數(shù)求函數(shù)的單調(diào)遞減區(qū)間,第二問是函數(shù)類不等式的證明,這類問題常常以導(dǎo)數(shù)為工具,利用函數(shù)的單調(diào)性來解決.
解:解:(1)函數(shù)f(x)的定義域?yàn)?/span>.=-1=-.由<0及x>-1,得x>0.∴ 當(dāng)x∈(0,+∞)時(shí),f(x)是減函數(shù),即f(x)的單調(diào)遞減區(qū)間為(0,+∞).
(2)證明:由⑴知,當(dāng)x∈(-1,0)時(shí),>0,當(dāng)x∈(0,+∞)時(shí),<0,
因此,當(dāng)時(shí),≤,即≤0∴.
令,則=.
∴ 當(dāng)x∈(-1,0)時(shí),<0,當(dāng)x∈(0,+∞)時(shí),>0.
∴ 當(dāng)時(shí),≥,即≥0,∴.
綜上可知,當(dāng)時(shí),有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且曲線在點(diǎn)處的切線與直線垂直.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某合資企業(yè)招聘大學(xué)生時(shí)加試英語(yǔ)聽力,待測(cè)試的小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),若從中隨機(jī)選2人,其中恰為一男一女的概率為.
(Ⅰ)求該小組中女生的人數(shù);
(Ⅱ)若該小組中每個(gè)女生通過測(cè)試的概率均為,每個(gè)男生通過測(cè)試的概率均為.現(xiàn)對(duì)該小組中女生甲、女生乙和男生丙、丁4人進(jìn)行測(cè)試.記這4人中通過測(cè)試的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為節(jié)約生活用水,某市計(jì)劃試行居民生活用水定額管理,為了較為合理地確定出居民月均用水量標(biāo)準(zhǔn),通過抽樣獲得了100位居民某年的月均用水量(單位:),并制作了頻率分布直方圖.
(1)由于某種原因頻率分布直方圖部分?jǐn)?shù)據(jù)丟失,請(qǐng)?jiān)趫D中將其補(bǔ)充完整,并說明理由;
(2)從頻率分布直方圖中估計(jì)該100位居民月均用水量的眾數(shù),中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:
日期 | 11月1日 | 11月2日 | 11月3日 | 11月4日 | 11月5日 |
溫差(℃) | 8 | 11 | 12 | 13 | 10 |
發(fā)芽數(shù)(顆) | 16 | 25 | 26 | 30 | 23 |
設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(參考:,)
(1)若選取的是11月1日與11月5日的兩組數(shù)據(jù)進(jìn)行檢驗(yàn),請(qǐng)根據(jù)11月2日至11月4日的三組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形和均為平行四邊形,點(diǎn)在平面內(nèi)的射影恰好為點(diǎn),以為直徑的圓經(jīng)過點(diǎn),,的中點(diǎn)為,的中點(diǎn)為,且.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形和均為平行四邊形,點(diǎn)在平面內(nèi)的射影恰好為點(diǎn),以為直徑的圓經(jīng)過點(diǎn),,的中點(diǎn)為,的中點(diǎn)為,且.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信搶紅包”自2015年以來異;鸨谀硞(gè)微信群某次進(jìn)行的搶紅包活動(dòng)中,若所發(fā)紅包的總金額為8元,被隨機(jī)分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于3元的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的焦點(diǎn)為,拋物線上一定點(diǎn).
(1)求拋物線的方程及準(zhǔn)線的方程;
(2)過焦點(diǎn)的直線(不經(jīng)過點(diǎn))與拋物線交于兩點(diǎn),與準(zhǔn)線交于點(diǎn),記的斜率分別為,問是否存在常數(shù),使得成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com