【題目】如圖,已知四邊形和均為平行四邊形,點在平面內(nèi)的射影恰好為點,以為直徑的圓經(jīng)過點,,的中點為,的中點為,且.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
試題分析: (Ⅰ)推導出平面,從而平面平面,從而,再求出,從而平面 ,由此能證明平面平面.(Ⅱ)以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.
試題解析:
(Ⅰ)∵點在平面內(nèi)的射影恰好為點,∴平面,
又平面,∴平面平面.
又以為直徑的圓經(jīng)過點,,,∴為正方形.
又平面平面,∴平面.
∵平面,,
又,∴,
又的中點為,∴,
∵,∴,
又平面,平面,,∴平面.
又平面,∴平面平面.
(Ⅱ)如圖,建立以為原點,的方向為軸的正方向,的方向為軸的正方向,的方向為軸的正方向的空間直角坐標系,
設,則,,,.
∵的中點為,∴,
故,,
設平面的法向量為,則∴
令,則.
易知平面的一個法向量為,
設二面角為,
∴,
容易看出二面角為銳角,故二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】在下列命題中,
①從分別標有1,2,……,9的9張卡片中不放回地隨機抽取2次,每次抽取1張,則抽到的2張卡片上的數(shù)奇偶性不同的概率是;
②的展開式中的常數(shù)項為2;
③設隨機變量,若,則.
其中所有正確命題的序號是( )
A.②B.①③
C.②③D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足(,且),且,設,,數(shù)列滿足.
(1)求證:數(shù)列是等比數(shù)列并求出數(shù)列的通項公式;
(2)求數(shù)列的前n項和;
(3)對于任意,,恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】棋盤上標有第0、1、2...100站,棋子開始位于第0站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第99站或第100站時,游戲結束.設棋子位于第n站的概率為,設.則下列結論正確的有( )
①;;
②數(shù)列()是公比為的等比數(shù)列;
③;
④.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,兩直角邊AB,AC的長分別為m,n(其中),以BC的中點O為圓心,作半徑為r()的圓O.
(1)若圓O與的三邊共有4個交點,求r的取值范圍;
(2)設圓O與邊BC交于P,Q兩點;當r變化時,甲乙兩位同學均證明出為定值甲同學的方法為:連接AP,AQ,AO,利用兩個小三角形中的余弦定理來推導;乙同學的方法為;以O為原點建立合適的直角坐標系,利用坐標法來計算.請在甲乙兩位同學的方法中選擇一種來證明該結論,定值用含m、n的式子表示.(若用兩種方法,按第一種方法給分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓,點,以線段為直徑的圓與圓內(nèi)切于點,記動點的軌跡為.
(1)求曲線的方程;
(2)設,是曲線上位于直線兩側的兩動點,當運動時,始終滿足,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系中,過點的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為與曲線C相交于不同的兩點M,N.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若,求實數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com