【題目】如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD平面CDE,H是BE的中點,G是AE,DF的交點

(1)求證:GH平面CDE;

(2)求證:面ADEF面ABCD

【答案】(1)詳見解析(2)詳見解析

【解析】

試題分析:1)欲證GH平面CDE,根據(jù)直線與平面平行的判定定理可知只需證GH與平面CDE內一直線平行,而GAE,DF的交點,GAE中點,又HBE的中點,則GHAB,而ABCD,則GHCDCD平面CDE,GH平面CDE,滿足定理所需條件(2)利用線面垂直的判定定理證明ED面ABCD,即可證明面AFED面ABCD

試題解析:(1)四邊形ADEF是正方形,G是AE,DF的交點,

G是AE中點,

又H是BE的中點,

∴△EAB中,GHAB,

ABCD為平行四邊形

ABCD

GHCD,

CD平面CDE,GH平面CDE

GH平面CDE

(2)BD平面CDE,

BDED,

四邊形AFED為正方形,EDAD,

ADBD=D,ED面ABCD,

EDAFED,

面AFED面ABCD

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量a=(x+z,3),b=(2,y-z),且a⊥b.若x,y滿足不等式|x|+|y|≤1,則z的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)

如圖,邊長為4的正方形中,點分別是上的點,將折起,使兩點重合于.

(1)求證:;

(2)當時,

求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是定義在上的偶函數(shù),且對任意的,都有.當時,.若直線與函數(shù)的圖象有兩個不同的公共點,則實數(shù)的值是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,曲線在點處的切線與直線垂直.

1)求的值;

(2)若對于任意的, 恒成立,求的取值范圍;

(3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足,求數(shù)列的通項公式.勤于思考的小紅設計了下面兩種解題思路,請你選擇其中一種并將其補充完整.

思路1:先設的值為1,根據(jù)已知條件,計算出_________, __________, _________

猜想: _______.

然后用數(shù)學歸納法證明.證明過程如下:

①當時,________________,猜想成立

②假設N*)時,猜想成立,即_______

那么,當時,由已知,得_________

,兩式相減并化簡,得_____________(用含的代數(shù)式表示).

所以,當時,猜想也成立.

根據(jù)①和②,可知猜想對任何N*都成立.

思路2:先設的值為1,根據(jù)已知條件,計算出_____________

由已知,寫出的關系式: _____________________,

兩式相減,得的遞推關系式: ____________________

整理: ____________

發(fā)現(xiàn):數(shù)列是首項為________,公比為_______的等比數(shù)列.

得出:數(shù)列的通項公式____,進而得到____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知隨機變量的取值為不大于的非負整數(shù)值,它的分布列為:

0

1

2

n

其中)滿足: ,且

定義由生成的函數(shù),令

(I)若由生成的函數(shù),求的值;

(II)求證:隨機變量的數(shù)學期望, 的方差

(Ⅲ)現(xiàn)投擲一枚骰子兩次,隨機變量表示兩次擲出的點數(shù)之和,此時由生成的函數(shù)記為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A是由a-2,2a2+5a,12三個元素構成的,且-3∈A,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某居民小區(qū)要建造一座八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個相同的矩形ABCD和EFGH構成的,是面積為200平方米的十字形地帶.計劃在正方MNPQ上建一座花壇,造價是每平方米4 200元,在四個相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價是每平方米210元,再在四個空角上鋪上草坪,造價是每平方米80元.

(1)設總造價是S元,AD長為x米,試建立S關于x的函數(shù)關系式;

(2)當x為何值時,S最。坎⑶蟪鲎钚≈担

查看答案和解析>>

同步練習冊答案