【題目】已知函數(shù)f(x)=|2x |,其在區(qū)間[0,1]上單調(diào)遞增,則a的取值范圍為(
A.[0,1]
B.[﹣1,0]
C.[﹣1,1]
D.[﹣ , ]

【答案】C
【解析】解:令t=2x , x∈[0,1],則t∈[1,2],y=f(x)=|t﹣ |,
若函數(shù)f(x)=|2x |,其在區(qū)間[0,1]上單調(diào)遞增,
則y=|t﹣ |,t∈[1,2]為增函數(shù),
若a>0,y=|t﹣ |的單調(diào)遞增區(qū)間為[﹣ ,0)和[ ,+∞),
≤1,即0<a≤1
若a=0,y=t,t∈[1,2]為增函數(shù),滿足條件;
若a<0,y=|t﹣ |的單調(diào)遞增區(qū)間為[﹣ ,0)和[ ,+∞),
≤1,即﹣1≤a<0,
綜上可得a的取值范圍為[﹣1,1],
故選:C
令t=2x , x∈[0,1],則t∈[1,2],y=f(x)=|t﹣ |,若函數(shù)f(x)=|2x |,其在區(qū)間[0,1]上單調(diào)遞增,則y=|t﹣ |,t∈[1,2]為增函數(shù),分類討論,可得滿足條件的a的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x4lnx﹣a(x4﹣1),a∈R.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若當(dāng)x≥1時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(3)f(x)的極小值為φ(a),當(dāng)a>0時(shí),求證: .(e=2.71828…為自然對(duì)數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市實(shí)施了機(jī)動(dòng)車尾號(hào)限行,該市報(bào)社調(diào)查組為了解市區(qū)公眾對(duì)“車輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:

年齡(歲)

[15,25)

[25,35)

[35,45)

[45,55)

[5565)

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

9

6

3

4

(Ⅰ)請(qǐng)估計(jì)該市公眾對(duì)“車輛限行”的贊成率和被調(diào)查者的年齡平均值;

)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記被選4人中不贊成“車輛限行”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

若在這50名被調(diào)查者中隨機(jī)發(fā)出20份的調(diào)查問卷,記為所發(fā)到的20人中贊成“車輛限行”的人數(shù),求使概率取得最大值的整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面邊長(zhǎng)為a,EPC的中點(diǎn).

(Ⅰ)求證:PA∥平面BDE

(Ⅱ)平面PAC⊥平面BDE;

(Ⅲ)若二面角E-BD-C為30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線 =1(a>0,b>0)的右焦點(diǎn)F作一條直線,當(dāng)直線斜率為l時(shí),直線與雙曲線左、右兩支各有一個(gè)交點(diǎn);當(dāng)直線斜率為3時(shí),直線與雙曲線右支有兩個(gè)不同的交點(diǎn),則雙曲線離心率的取值范圍為(
A.(1,
B.(1,
C.(
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公比為2的等比數(shù)列{an}中,a2與a3的等差中項(xiàng)是9
(1)求a1的值;
(2)若函數(shù)y=|a1|sin( x+φ),|φ|<π,的一部分圖象如圖所示,M(﹣1,|a1|),N(3,﹣|a1|)為圖象上的兩點(diǎn),設(shè)∠MPN=β,其中P與坐標(biāo)原點(diǎn)O重合,0<β<π,求tan(φ﹣β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=exsinx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果對(duì)于任意的 ,f(x)≥kx恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)函數(shù)F(x)=f(x)+excosx, ,過點(diǎn) 作函數(shù)F(x)的圖象的所有切線,令各切點(diǎn)的橫坐標(biāo)按從小到大構(gòu)成數(shù)列{xn},求數(shù)列{xn}的所有項(xiàng)之和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)求實(shí)數(shù)的值;

(2)當(dāng)時(shí),函數(shù)存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù),若函數(shù)的圖像只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賓館有間標(biāo)準(zhǔn)相同的客房,客房的定價(jià)將影響入住率.經(jīng)調(diào)查分析,得出每間客房的定價(jià)與每天的入住率的大致關(guān)系如下表:

每間客房的定價(jià)

220元

200元

180元

160元

每天的入住率

對(duì)于每間客房,若有客住,則成本為80元;若空閑,則成本為40元.要使此賓館每天的住房利潤(rùn)最高,則每間客房的定價(jià)大致應(yīng)為( )

A. 220元 B. 200元 C. 180元 D. 160元

查看答案和解析>>

同步練習(xí)冊(cè)答案