【題目】已知函數(shù)是偶函數(shù).
(1)求實(shí)數(shù)的值;
(2)當(dāng)時(shí),函數(shù)存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若函數(shù)與的圖像只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)1;(2);(3)
【解析】
(1)函數(shù)是偶函數(shù), 所以得出值檢驗(yàn)即可;(2)因?yàn)?/span>時(shí),存在零點(diǎn),即關(guān)于的方程有解,求出的值域即可;(3)因?yàn)楹瘮?shù)與的圖像只有一個(gè)公共點(diǎn),所以關(guān)于的方程有且只有一個(gè)解,所以,換元,研究二次函數(shù)圖象及性質(zhì)即可得出實(shí)數(shù)的取值范圍.
(1)因?yàn)?/span>是上的偶函數(shù),
所以,即
解得,經(jīng)檢驗(yàn):當(dāng)時(shí),滿足題意.
(2)因?yàn)?/span>,所以
因?yàn)?/span>時(shí),存在零點(diǎn),
即關(guān)于的方程有解,
令,則
因?yàn)?/span>,所以,所以,
所以,實(shí)數(shù)的取值范圍是.
(3)因?yàn)楹瘮?shù)與的圖像只有一個(gè)公共點(diǎn),
所以關(guān)于的方程有且只有一個(gè)解,
所以
令,得 (*),記,
①當(dāng)時(shí),方程(*)的解為,不滿足題意,舍去;
②當(dāng)時(shí),函數(shù)圖像開口向上,又因?yàn)閳D像恒過點(diǎn),方程(*)有一正一負(fù)兩實(shí)根,所以符合題意;
③當(dāng)時(shí),且時(shí),解得,
方程(*)有兩個(gè)相等的正實(shí)根,所以滿足題意.
綜上,的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f.
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖象在點(diǎn)處的切線方程;
(3)若不等式恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣ |,其在區(qū)間[0,1]上單調(diào)遞增,則a的取值范圍為( )
A.[0,1]
B.[﹣1,0]
C.[﹣1,1]
D.[﹣ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某上市股票在30天內(nèi)每股的交易價(jià)格(元)與時(shí)間(天)組成有序數(shù)對,點(diǎn)落在圖中的兩條線段上;該股票在30天內(nèi)的日交易量(萬股)與時(shí)間(天)的部分?jǐn)?shù)據(jù)如下表所示,且與滿足一次函數(shù)關(guān)系,
第天 | 4 | 10 | 16 | 22 |
(萬股) | 36 | 30 | 24 | 18 |
那么在這30天中第幾天日交易額最大( )
A. 10 B. 15 C. 20 D. 25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】醫(yī)藥公司針對某種疾病開發(fā)了一種新型藥物,患者單次服用制定規(guī)格的該藥物后,其體內(nèi)的藥物濃度隨時(shí)間的變化情況(如圖所示):當(dāng)時(shí),與的函數(shù)關(guān)系式為(為常數(shù));當(dāng)時(shí),與的函數(shù)關(guān)系式為(為常數(shù)).服藥后,患者體內(nèi)的藥物濃度為,這種藥物在患者體內(nèi)的藥物濃度不低于最低有效濃度,才有療效;而超過最低中毒濃度,患者就會(huì)有危險(xiǎn).
(1)首次服藥后,藥物有療效的時(shí)間是多長?
(2)首次服藥1小時(shí)后,可否立即再次服用同種規(guī)格的這種藥物?
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,.
(1)求以線段為鄰邊的平行四邊形的另一頂點(diǎn)的坐標(biāo);
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),已知曲線在點(diǎn)處的切線與直線平行
(Ⅰ)求的值;
(Ⅱ)是否存在自然數(shù),使得方程在內(nèi)存在唯一的根?如果存在,求出;如果不存在,請說明理由。
(Ⅲ)設(shè)函數(shù)(表示中的較小者),求的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邗江中學(xué)高二年級某班某小組共10人,利用寒假參加義工活動(dòng),已知參加義工活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會(huì).
(1)記“選出2人參加義工活動(dòng)的次數(shù)之和為4”為事件,求事件發(fā)生的概率;
(2)設(shè)為選出2人參加義工活動(dòng)次數(shù)之差的絕對值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求證:AC⊥FB
(2)求二面角E﹣FB﹣C的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com