【題目】已知非空有限實(shí)數(shù)集S的所有非空子集依次記為S1 , S2 , S3 , …,集合Sk中所有元素的平均值記為bk . 將所有bk組成數(shù)組T:b1 , b2 , b3 , …,數(shù)組T中所有數(shù)的平均值記為m(T).
(1)若S={1,2},求m(T);
(2)若S={a1 , a2 , …,an}(n∈N* , n≥2),求m(T).

【答案】
(1)解:S={1,2}的所有非空子集為{1},{2},{1,2},

∴數(shù)組T為:1,2,

∴m(T)=


(2)解:∵S={a1,a2,…,an}

∴m(T)=

又∵ = =

∴m(T)=

=


【解析】(1)先求出S={1,2}的所有非空子集為{1},{2},{1,2},利用m(T)的定義求出其值(2)利用組合數(shù)及m(T)的定義求出m(T)= ,利用組合數(shù)的性質(zhì),化簡(jiǎn)求值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解元素與集合關(guān)系的判斷(對(duì)象與集合的關(guān)系是,或者,兩者必居其一).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an},a1=﹣ll,公差d≠0,且a2 , a5 , a6成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=|an|,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,正確的是( ) ①x∈R,2x>3x;②“x≠3”是“|x|≠3”成立的充分條件;③空間中若直線l若平行于平面α,則α內(nèi)所有直線均與l是異面直線;④空間中有三個(gè)角是直角的四邊形不一定是平面圖形.
A.①③
B.①④
C.②④
D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別是
(1)求角C;
(2)若△ABC的中線CD的長(zhǎng)為1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在區(qū)間[﹣5,5]內(nèi)隨機(jī)地取出一個(gè)數(shù)a,則恰好使1是關(guān)于x的不等式2x2+ax﹣a2<0的一個(gè)解的概率大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (e為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=b=0時(shí),直接寫(xiě)出f(x)的值域(不要求寫(xiě)出求解過(guò)程);
(2)若a= ,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若f(1)=1,且方程f(x)=1在(0,1)內(nèi)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)正數(shù)x,y滿足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,則實(shí)數(shù)a的取值范圍是(
A.(1, ]
B.(1, ]
C.[ ,+∞)
D.[ ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖框圖,已知輸出的s∈[0,4],若輸入的t∈[m,n],則實(shí)數(shù)n﹣m的最大值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:+=1,(ab0)的離心率為,點(diǎn)(2,)在C上
(1)求C的方程;
(2)直線l不經(jīng)過(guò)原點(diǎn)O,且不平行于坐標(biāo)軸,lC有兩個(gè)交點(diǎn)A,B,線段AB中點(diǎn)為M,證明:直線OM的斜率與直線l的斜率乘積為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案