【題目】如圖是我國2010年至2016年生活垃圾無害化處理量(單位:億噸)的折線圖.

注:年份代碼1~7分別對應(yīng)年份2010~2016.

(Ⅰ)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)加以說明;

(Ⅱ)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測2018年我國生活垃圾無害化處理量.

參考數(shù)據(jù):,,.

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計(jì)公式分別為.

【答案】(Ⅰ)的線性相關(guān)程度相當(dāng)大;(Ⅱ)無害化處理量約為1.82億噸.

【解析】

(Ⅰ)由折線圖中數(shù)據(jù)和附注中參考數(shù)據(jù),計(jì)算相關(guān)系數(shù),根據(jù)相關(guān)系數(shù)的值得出結(jié)論;

(Ⅱ)計(jì)算回歸系數(shù),寫出y關(guān)于t的回歸方程;將2018年對應(yīng)的t值代入回歸方程,計(jì)算對應(yīng)的函數(shù)值即可.

(Ⅰ)由折線圖中的數(shù)據(jù)和附注中的參考數(shù)據(jù)得

,,,

,

.

因?yàn)?/span>的相關(guān)系數(shù)近似為0.99,說明的線性相關(guān)程度相當(dāng)大,

從而可以用線性回歸模型擬合的關(guān)系.

(Ⅱ)由及(1)得

,

.

所以關(guān)于的回歸方程為.

將2018年對應(yīng)的代入回歸方程得.

所以預(yù)測2018年我國生活垃圾無害化處理量約為1.82億噸.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機(jī)挑選出5名同學(xué),他們的數(shù)學(xué)成績與物理成績如下表:

數(shù)據(jù)表明之間有較強(qiáng)的線性關(guān)系.

(1)求關(guān)于的線性回歸方程;

(2)該班一名同學(xué)的數(shù)學(xué)成績?yōu)?10分,利用(1)中的回歸方程,估計(jì)該同學(xué)的物理成績;

(3)本次考試中,規(guī)定數(shù)學(xué)成績達(dá)到125分為優(yōu)秀,物理成績達(dá)到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯誤概率不超過0.01的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?

參考數(shù)據(jù):回歸直線的系數(shù),.

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓的直徑為圓心,,為半圓上的點(diǎn).

(Ⅰ)請你為點(diǎn)確定位置,使的周長最大,并說明理由;

(Ⅱ)已知,設(shè),當(dāng)為何值時,

(。┧倪呅的周長最大,最大值是多少?

(ⅱ)四邊形的面積最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)= (a∈R),f(x)=ln(x+1)+g(x).

(1)若函數(shù)g(x)過點(diǎn)(1,1),求函數(shù)f(x)的圖象在x=0處的切線方程;

(2)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓短軸的兩個端點(diǎn)與點(diǎn)構(gòu)成正三角形.

(1)求橢圓的方程;

(2)若過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),試問在軸上是否存在定點(diǎn),使恒為定值?若存在,求出的坐標(biāo),并求出這個定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

)當(dāng)時,判斷在定義域上的單調(diào)性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)滿足,的虛部為2,

1)求復(fù)數(shù)

2)設(shè)在復(fù)平面上對應(yīng)點(diǎn)分別為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于軸對稱,當(dāng)函數(shù)在區(qū)間同時遞增或同時遞減時,把區(qū)間叫做函數(shù)的“不動區(qū)間”.若區(qū)間為函數(shù)的“不動區(qū)間”,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,x R其中a>0.

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)f(x)在區(qū)間(-3,0)內(nèi)恰有兩個零點(diǎn),求a的取值范圍;

(Ⅲ)當(dāng)a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記 ,求函數(shù)g(t)在區(qū)間[-4,-1]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案