【題目】我國華南沿海地區(qū)是臺風(fēng)登陸頻繁的地區(qū),為統(tǒng)計(jì)地形地貌對臺風(fēng)的不同影響,把華南沿海分成東西兩區(qū),對臺風(fēng)的強(qiáng)度按風(fēng)速劃分為:風(fēng)速不小于30米/秒的稱為強(qiáng)臺風(fēng),風(fēng)速小于30米/秒的稱為風(fēng)暴,下表是2014年對登陸華南地區(qū)的15次臺風(fēng)在東西兩部的強(qiáng)度統(tǒng)計(jì):

(1)根據(jù)上表,計(jì)算有沒有99%以上的把握認(rèn)為臺風(fēng)強(qiáng)度與東西地域有關(guān);

(2)2017年8月23日,“天鴿”在深圳登陸,造成深圳特大風(fēng)暴,如圖所示的莖葉圖統(tǒng)計(jì)了深圳15塊區(qū)域的風(fēng)速.(十位數(shù)為莖,個位數(shù)為葉)

①任取2個區(qū)域進(jìn)行統(tǒng)計(jì),求取到2個區(qū)域風(fēng)速不都小于25的概率;

②任取3個區(qū)域進(jìn)行統(tǒng)計(jì), 表示“風(fēng)速達(dá)到強(qiáng)臺風(fēng)級別的區(qū)域個數(shù)”,求的分布列及數(shù)學(xué)期望.

附: ,其中.

【答案】(1)見解析;(2)①見解析.②見解析.

【解析】試題分析:(1)由題意得到列聯(lián)表,計(jì)算的觀測值,從而作出判斷;

(2)①風(fēng)速小于25的區(qū)域有7塊,2塊區(qū)域風(fēng)速都小于25的概率為

②達(dá)到強(qiáng)臺風(fēng)級別的區(qū)域有5塊,故.求出相應(yīng)的概率值,從而得到分布列及期望.

試題解析:

(1)列聯(lián)表如下:

列聯(lián)表中數(shù)據(jù),

可得的觀測值 ,

所以沒有99%以上的把握認(rèn)為臺風(fēng)強(qiáng)度與東西地域有關(guān).

(2)①風(fēng)速小于25的區(qū)域有7塊,

2塊區(qū)域風(fēng)速都小于25的概率為

故取到2個區(qū)域風(fēng)速都不小于25的概率為.

②達(dá)到強(qiáng)臺風(fēng)級別的區(qū)域有5塊,

.

,

,

,

,

故隨機(jī)變量的分布列為

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了增強(qiáng)學(xué)生的記憶力和辨識力,組織了一場類似《最強(qiáng)大腦》的 PK 賽,兩隊(duì)各由 4 名選手組成,每局兩隊(duì)各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分.假設(shè)每局比賽A隊(duì)選手獲勝的概率均為,且各局比賽結(jié)果相互獨(dú)立,比賽結(jié)束時A隊(duì)的得分高于B隊(duì)的得分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】針對國家提出的延遲退休方案,某機(jī)構(gòu)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:

支持

保留

不支持

歲以下

歲以上(含歲)

(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;

(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個總體,從這人中任意選取人,求至少有一人年齡在歲以下的概率.

(3)在接受調(diào)查的人中,有人給這項(xiàng)活動打出的分?jǐn)?shù)如下: , , , , , , ,把這個人打出的分?jǐn)?shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】M是正方體的棱的中點(diǎn),給出下列四個命題:①過M點(diǎn)有且只有一條直線與直線都相交;②過M點(diǎn)有且只有一條直線與直線都垂直;③過M點(diǎn)有且只有一個平面與直線都相交;④過M點(diǎn)有且只有一個平面與直線都平行;其中真命題是(

A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)如果曲線在點(diǎn)處的切線的斜率是,求的值;

)當(dāng),時,求證:;

)若存在單調(diào)遞增區(qū)間,請直接寫出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)的圖象的兩相鄰對稱中心的距離為.

1)求的值;

2)將函數(shù)的圖象向右平移個單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求圓的直角坐標(biāo)方程,并寫出圓心和半徑;

(2)若直線與圓交于兩點(diǎn),求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖如示的多面體中,平面平面,四邊形是邊長為的正方形, ,.

1)若分別是中點(diǎn),求證: ∥平面

2)求此多面體的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線方程為,其中.

1)求證:直線恒過定點(diǎn);

2)當(dāng)變化時,求點(diǎn)到直線的距離的最大值及此時的直線方程;

3)若直線分別與軸的負(fù)半軸交于兩點(diǎn),求面積的最小值及此時的直線方程.

查看答案和解析>>

同步練習(xí)冊答案