【題目】定義函數(shù),其中x為自變量,a為常數(shù).
(1)若當(dāng)x∈[0,2]時(shí),函數(shù)fa(x)的最小值為﹣1,求a的值;
(2)設(shè)全集U=R,集合A={x|f3(x)≥0},B={x|fa(x)+fa(2﹣x)=f2(2)},且(UA)∩B≠中,求a的取值范圍.
【答案】(1)3;(2)
【解析】
(1)設(shè)t=2x,換元后,變?yōu)槎魏瘮?shù),確定新元取值范圍為,按對(duì)稱軸與區(qū)間的關(guān)系求函數(shù)的最小值,從而可求得;
(2)先求出集合UA,化簡(jiǎn)方程由題意fa(x)+fa(2﹣x)=f2(2),題意說(shuō)明(a+1)()+2a﹣6=0在(0,log23)內(nèi)有解,換元設(shè)t,由指數(shù)函數(shù)及對(duì)勾函數(shù)性質(zhì)得t∈[4,5),問(wèn)題可以轉(zhuǎn)化為方程在t∈[4,5)上有解,只要求得,t∈[4,5)的值域即可,這又可由函數(shù)單調(diào)性得出.
(1)令t=2x,∵x∈[0,2],∴t∈[1,4],
設(shè)φ(t)=t2﹣(a+1)t+a,t∈[1,4],
1°當(dāng),即a≤1時(shí),fmin(x)=φ(1)=0,與已知矛盾;
2°當(dāng),即,
解得a=3或a=﹣1,∵1<a<7,∴a=3;
3°當(dāng),即a≥7,fmin(x)=φ(4)=16﹣4a﹣4+a=1,
解得,但與a≥7矛盾,故舍去,
綜上所述,a的值為3.
(2)UA={x|4x﹣42x+3<0}={x|0<x<log23},
B={x|4x﹣(a+1)2x+a+42﹣x﹣(a+1)22﹣x+a=6}.
由已知(UA)∩B≠即(a+1)()+2a﹣6=0在(0,log23)內(nèi)有解,
令t,則t∈[4,5),方程(t2﹣8)﹣(a+1)t+2a﹣6在[4,5)上有解,
也等價(jià)于方程在t∈[4,5)上有解,
∵在t∈[4,5)上單調(diào)遞增,
∴h(t)∈[﹣1,2),
故所求a的取值范圍是[﹣1,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四名工人一天中生產(chǎn)零件的情況如圖所示,每個(gè)點(diǎn)的橫、縱坐標(biāo)分別表示該工人一天中生產(chǎn)
的Ⅰ型、Ⅱ型零件數(shù),有下列說(shuō)法:
四個(gè)工人中,的日生產(chǎn)零件總數(shù)最大
②日生產(chǎn)零件總數(shù)之和小于日生產(chǎn)零件總數(shù)之和
③日生產(chǎn)Ⅰ型零件總數(shù)之和小于Ⅱ型零件總數(shù)之和
④日生產(chǎn)Ⅰ型零件總數(shù)之和小于Ⅱ型零件總數(shù)之和
則正確的說(shuō)法有__________(寫(xiě)出所有正確說(shuō)法的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),下列結(jié)論不正確的是( )
A. 此函數(shù)為偶函數(shù)B. 此函數(shù)是周期函數(shù)
C. 此函數(shù)既有最大值也有最小值D. 方程的解為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),設(shè)函數(shù)的所有零點(diǎn)構(gòu)成集合,函數(shù)的所有零點(diǎn)構(gòu)成集合.
(1)試求集合、;
(2)令,求函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:“,使等式成立”是真命題.
(1)求實(shí)數(shù)的取值集合;
(2)設(shè)不等式的解集為,若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年4月23日我市正式宣布實(shí)施“3+1+2”的高考新方案,“3”是指必考的語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門(mén)學(xué)科,“1”是指在物理和歷史中必選一科,“2”是指在化學(xué)、生物、政治、地理四科中任選兩科.為了解我校高一學(xué)生在物理和歷史中的選科意愿情況,進(jìn)行了一次模擬選科. 已知我校高一參與物理和歷史選科的有1800名學(xué)生,其中男生1000人,女生800人. 按分層抽樣的方法從中抽取了36個(gè)樣本,統(tǒng)計(jì)知其中有17個(gè)男生選物理,6個(gè)女生選歷史.
(I)根據(jù)所抽取的樣本數(shù)據(jù),填寫(xiě)答題卷中的列聯(lián)表. 并根據(jù)統(tǒng)計(jì)量判斷能否有的把握認(rèn)為選擇物理還是歷史與性別有關(guān)?
(II)在樣本里選歷史的人中任選4人,記選出4人中男生有人,女生有人,求隨機(jī)變量 的分布列和數(shù)學(xué)期望.(的計(jì)算公式見(jiàn)下),臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求滿足方程的的值;
(2)若函數(shù)是定義在R上的奇函數(shù).
①若存在,使得不等式成立,求實(shí)數(shù)的取值范圍;
②已知函數(shù)滿足,若對(duì)任意且,不等式恒成立,求實(shí)數(shù)的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E,F,G分別是AB,CC1,AD的中點(diǎn).
(1)求異面直線EG與B1C所成角的大。
(2)棱CD上是否存在點(diǎn)T,使AT∥平面B1EF?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com