【題目】如圖,在正方體ABCDA1B1C1D1中,EF,G分別是ABCC1,AD的中點(diǎn).

1)求異面直線EGB1C所成角的大。

2)棱CD上是否存在點(diǎn)T,使AT∥平面B1EF?若存在,求出的值;若不存在,請說明理由.

【答案】160°;(2)存在,

【解析】

1)連接,.推導(dǎo)出,.從而為異面直線所成角.由此能求出異面直線所成角的大小.

2)在棱上取點(diǎn),使得,延長交于,連,推導(dǎo)出四邊形為平行四邊形,由此推導(dǎo)出平面.此時(shí)

解:(1)連接,

因?yàn)?/span>分別是,的中點(diǎn),所以

又因?yàn)?/span>.所以為異面直線所成角.

在△中,因?yàn)?/span>

所以異面直線所成角的大小為

(2)在棱上取點(diǎn),使得,則平面

證明如下:延長,交于,連

因?yàn)?/span>,中點(diǎn),所以中點(diǎn).

因?yàn)?/span>,所以,且

因?yàn)?/span>,中點(diǎn),所以,且,

即四邊形為平行四邊形,

所以,即

平面,平面

所以平面.此時(shí)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C過點(diǎn)A(2,6),且與直線l1: x+y10=0相切于點(diǎn)B(6,4).

(1)求圓C的方程;

(2)過點(diǎn)P(6,24)的直線l2與圓C交于M,N兩點(diǎn),若△CMN為直角三角形,求直線l2的斜率;

(3)在直線l3: y=x2上是否存在一點(diǎn)Q,過點(diǎn)Q向圓C引兩切線,切點(diǎn)為E,F, 使△QEF為正三角形,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù),其中x為自變量,a為常數(shù).

1)若當(dāng)x[02]時(shí),函數(shù)fax)的最小值為﹣1,求a的值;

2)設(shè)全集UR,集合A{x|f3x≥0},B{x|fax+fa2x)=f22},且(UAB中,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若,且對任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第23屆冬季奧運(yùn)會(huì)于2018年2月9日至2月25日在韓國平昌舉行,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會(huì)對全校教職工在冬季奧運(yùn)會(huì)期間每天收看比賽轉(zhuǎn)播的時(shí)間作了一次調(diào)查,得到如下頻數(shù)分布表:

(1)若講每天收看比賽轉(zhuǎn)播時(shí)間不低于3小時(shí)的教職工定義為“體育達(dá)人”,否則定義為“非體育達(dá)人”,請根據(jù)頻數(shù)分布表補(bǔ)全列聯(lián)表:

并判斷能否有90%的把握認(rèn)為該校教職工是否為“體育達(dá)人”與“性別”有關(guān);

(2)在全!绑w育達(dá)人”中按性別分層抽樣抽取6名,再從這6名“體育達(dá)人”中選取2名作冬奧會(huì)知識(shí)講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附表及公式:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),試判斷函數(shù)的單調(diào)性;

(2)若,求證:函數(shù)上的最小值小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的參數(shù)方程為(t為參數(shù)).

(1)寫出曲線的參數(shù)方程和直線的普通方程;

(2)已知點(diǎn)是曲線上一點(diǎn),,求點(diǎn)到直線的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)的圖象向右平移一個(gè)單位,所得圖象與函數(shù)的圖象關(guān)于直線對稱;已知偶函數(shù)滿足,當(dāng)時(shí),;若函數(shù)有五個(gè)零點(diǎn),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:

溫度x/C

21

23

24

27

29

32

產(chǎn)卵數(shù)y/個(gè)

6

11

20

27

57

77

經(jīng)計(jì)算得: , , ,

,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.

( i )試與()中的回歸模型相比,用R2說明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測溫度為35C時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為

=;相關(guān)指數(shù)R2=

查看答案和解析>>

同步練習(xí)冊答案