【題目】培養(yǎng)某種水生植物需要定期向培養(yǎng)植物的水中加入物質(zhì),已知向水中每投放1個(gè)單位的物質(zhì),(單位:天)時(shí)刻后水中含有物質(zhì)的量增加,與的函數(shù)關(guān)系可近似地表示為關(guān)系可近似地表示為.根據(jù)經(jīng)驗(yàn),當(dāng)水中含有物質(zhì)的量不低時(shí),物質(zhì)才能有效發(fā)揮作用.
(1)若在水中首次投放1個(gè)單位的物質(zhì),計(jì)算物質(zhì)能持續(xù)有效發(fā)揮作用幾天?
(2)若在水中首次投放1個(gè)單位的物質(zhì),第8天再投放1個(gè)單位的物質(zhì),試判斷第8天至第12天,水中所含物質(zhì)的量是否始終不超過(guò),并說(shuō)明理由.
【答案】(1)6天.(2)第8天至第12天,水中所含物質(zhì)的量始終不超過(guò).見(jiàn)解析
【解析】
(1)由題可知,分類(lèi)討論求解滿足時(shí)的的范圍,即可得出在水中首次投放1個(gè)單位的物質(zhì),物質(zhì)能持續(xù)有效發(fā)揮作用的天數(shù);
(2)根據(jù)已知求出函數(shù)解析式,利用基本不等式即可求得當(dāng)時(shí),,從而得出結(jié)論.
解:(1)由題意,(單位:天)時(shí)刻后水中含有物質(zhì)的量為:
,
由于當(dāng)水中含有物質(zhì)的量不低時(shí),物質(zhì)才能有效發(fā)揮作用,
即需,
則當(dāng)時(shí),且當(dāng)時(shí),,
解得:,
所以若在水中首次投放1個(gè)單位的物質(zhì),物質(zhì)能持續(xù)有效發(fā)揮作用的時(shí)間為:8-2=6天.
(2)設(shè)第天水中所含物質(zhì)的量為,
則,
,
當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,
即當(dāng)時(shí),,
所以第8天至第12天,水中所含物質(zhì)的量始終不超過(guò).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),設(shè).若正實(shí)數(shù),滿足,,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”; 乙說(shuō):“ 作品獲得一等獎(jiǎng)”;
丙說(shuō):“ 兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):“是作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為準(zhǔn)備參加市運(yùn)動(dòng)會(huì),對(duì)本校甲、乙兩個(gè)田徑隊(duì)中名跳高運(yùn)動(dòng)員進(jìn)行了測(cè)試,并用莖葉圖表示出本次測(cè)試人的跳高成績(jī)(單位:).跳高成績(jī)?cè)?/span>以上(包括)定義為“合格”,成績(jī)?cè)?/span>以下(不包括)定義為“不合格”.鑒于乙隊(duì)組隊(duì)晚,跳高成績(jī)相對(duì)較弱,為激勵(lì)乙隊(duì)隊(duì)隊(duì),學(xué)校決定只有乙隊(duì)中“合格”者才能參加市運(yùn)動(dòng)會(huì)開(kāi)幕式旗林隊(duì).
(1)求甲隊(duì)隊(duì)員跳高成績(jī)的中位數(shù);
(2)如果用分層抽樣的方法從甲、乙兩隊(duì)所有的運(yùn)動(dòng)員中共抽取人,則人中“合格”與“不合格”的人數(shù)各為多少;
(3)若從所有“合格”運(yùn)動(dòng)員中選取名,用表示所選運(yùn)動(dòng)員中能參加市運(yùn)動(dòng)會(huì)開(kāi)幕式旗林隊(duì)的人數(shù),試求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓臺(tái)的軸截面為等腰梯形,,,,圓臺(tái)的側(cè)面積為.若點(diǎn)C,D分別為圓,上的動(dòng)點(diǎn)且點(diǎn)C,D在平面的同側(cè).
(1)求證:;
(2)若,則當(dāng)三棱錐的體積取最大值時(shí),求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐,是等邊三角形,,,,,是的中點(diǎn).
(Ⅰ)證明:直線平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】蜂巢是由工蜂分泌蜂蠟建成的.從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個(gè)全等的菱形面構(gòu)成.如圖,在正六棱柱的三個(gè)頂點(diǎn)處分別用平面,平面,平面截掉三個(gè)相等的三棱錐,,,平面,平面,平面交于點(diǎn),就形成了蜂巢的結(jié)構(gòu),如下圖(4)所示,
瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂巢的這種結(jié)構(gòu)是在相同容積下所用材料最省的,英國(guó)數(shù)學(xué)家麥克勞林通過(guò)計(jì)算得到菱形的一個(gè)內(nèi)角為,即.以下三個(gè)結(jié)論①;② ;③四點(diǎn)共面,正確命題的個(gè)數(shù)為______個(gè);若,,,則此蜂巢的表面積為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com