設(shè)實(shí)數(shù)x,y滿足
-1≤x+y≤1
-1≤x-y≤1
,則點(diǎn)(x,y)在圓面x2+y2
1
2
內(nèi)部的概率為
 
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:畫出實(shí)數(shù)x,y滿足
-1≤x+y≤1
-1≤x-y≤1
,對(duì)應(yīng)的平面區(qū)域,和任取其中x,y,使x2+y2
1
2
對(duì)應(yīng)的平面區(qū)域,分別求出其面積大小,代入幾何概型概率公式,即可得到答案.
解答: 解:在平面坐標(biāo)系中滿足
-1≤x+y≤1
-1≤x-y≤1
的(x,y)點(diǎn)如下圖中正方形面積所示:
滿足條件x2+y2
1
2
的(x,y)點(diǎn)如圖中陰影部分所示:
∵S正方形=2,S陰影=
1
2
π
故任取其中x,y,使x2+y2
1
2
的概率P=
S陰影
S矩形
=
1
2
π
2
=
π
4
;
故答案為:
π
4
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是幾何概型,其中分別計(jì)算出基本事件總數(shù)和滿足條件的基本事件對(duì)應(yīng)的平面區(qū)域的面積是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

假設(shè)某軍工廠生產(chǎn)一種產(chǎn)品每年需要固定投資100萬(wàn)元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬(wàn)元.若年產(chǎn)量為x(x∈N*)件,當(dāng)x≤20時(shí),政府全年合計(jì)給予財(cái)政撥款額為(31x-x2)萬(wàn)元;當(dāng)x>20時(shí),政府全年合計(jì)給予財(cái)政撥款額為(240+0.5x)萬(wàn)元.記該工廠生產(chǎn)這種產(chǎn)品全年凈收入為y萬(wàn)元.
(1)求y(萬(wàn)元)與x(件)的函數(shù)關(guān)系式.
(2)該工廠的年產(chǎn)量為多少件時(shí),全年凈收入達(dá)到最大,并求最大值.
(友情提示:年凈收入=政府年財(cái)政撥款額-年生產(chǎn)總投資).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(Ⅰ)求證:{
an
2n
}
是等差數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列4個(gè)命題中,p是q的充要條件的個(gè)數(shù)是(  )
①p:A∪B=A,q:∁UA⊆∁UB;
②p:y=f(x-1)為奇函數(shù),q:y=f(x)關(guān)于點(diǎn)(1,0)對(duì)稱;
③p:?x∈R+,滿足方程ax-2=0,q:?b∈R,函數(shù)f(x)=ax3-3ax+b在(-1,1)上遞減;
④p:
2<x+y<4
0<xy<3
,q:
0<x<1
2<y<3
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cos
3x
2
.-sin
3x
2
),
b
=(cos
x
2
,sin
x
2

(1)設(shè)函數(shù)f(x)=
a
b
,求f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)函數(shù)g(x)=
a
b
-2λ|
a
+
b
|,若g(x)的最小值是-
3
2
,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C所對(duì)邊的邊長(zhǎng),設(shè)
m
=(b-
2
c
,a),
n
=(cosA,cosB),且
m
n

(Ⅰ)求角A的大;
(Ⅱ)若a=
2
,△ABC的面積為1,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C是△ABC的三個(gè)內(nèi)角,向量
m
=(1,
3
),
n
=(sinA,2+cosA),且
m
n
,邊AC長(zhǎng)為2.
(Ⅰ)求角A;
(Ⅱ)若
1+sin2B
cos2B-sin2B
=3,求邊AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若3b=5ccosA,tanA=2.
(Ⅰ)求tan C的值;
(Ⅱ)求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)的定義域?yàn)镽,當(dāng)x∈[0,+∞)時(shí),f(x)單調(diào)遞增.若f(2)=0,則滿足不等式f(x)≤0的x的取值范圍是( 。
A、(-∞,2]
B、[0,2]
C、[-2,2]
D、[-2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案