【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率為,過橢圓C上一點P(2,1)作x軸的垂線,垂足為Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點Q的直線l交橢圓C于點A,B,且3+=,求直線l的方程.

【答案】;()y=±(x﹣2).

【解析】

試題分析Ⅰ)設橢圓的方程為,由題意得,,解出求出 、的值即可得出橢圓的方程;(Ⅱ)由題意得點,設直線方程為,將直線,代入橢圓方程得到,利用向量的坐標運算性質(zhì)、一元二次方程的根與系數(shù)的關系列方程即可得出 的值,從而可求得直線方程

試題解析:(Ⅰ)設橢圓C的方程為+=1(ab0),

由題意得=, +=1,a2=b2+c2

解得a2=6,b2=c2=3,則橢圓C: ==1.

Ⅱ)由題意得點Q(2,0),

設直線方程為x=ty+2(t0),A(x1,y1),B(x2,y2),

=(x1﹣2,y1),=(x2﹣2,y2),

3+=,得3y1+y2=0,

y1+y2=﹣2y1,y1y2=﹣3,得到=﹣(*)

將直線x=ty+2(t0),代入橢圓方程得到(2+t2)y2+4ty﹣2=0,

y1+y2=,y1y2=,代入(*)式,解得:t2=

∴直線l的方程為:y=±(x﹣2).

【方法點晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關系和平面向量的線性運算,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點在軸上,還是在軸上,還是兩個坐標軸都有可能;②設方程:根據(jù)上述判斷設方程 ;③找關系:根據(jù)已知條件,建立關于、、的方程組;④得方程:解方程組,將解代入所設方程,即為所求.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】供電部門對某社區(qū)位居民2017年12月份人均用電情況進行統(tǒng)計后,按人均用電量分為, , , 五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是

A. 月份人均用電量人數(shù)最多的一組有

B. 月份人均用電量不低于度的有

C. 月份人均用電量為

D. 在這位居民中任選位協(xié)助收費,選到的居民用電量在一組的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有以下四個命題,其中正確的是( )

A. 由獨立性檢驗可知,有的把握認為物理成績與數(shù)學成績有關,若某人數(shù)學成績優(yōu)秀,則他有的可能物理成績優(yōu)秀;

B. 兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于

C. 在線性回歸方程中,當變量每增加一個單位時,變量平均增加個單位

D. 線性回歸方程對應的直線至少經(jīng)過樣本數(shù)據(jù)點中的一個點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個,生產(chǎn)一個衛(wèi)兵需分鐘,生產(chǎn)一個騎兵需分鐘,生產(chǎn)一個傘兵需分鐘,已知總生產(chǎn)時間不超過小時,若生產(chǎn)一個衛(wèi)兵可獲利潤元,生產(chǎn)一個騎兵可獲利潤元,生產(chǎn)一個傘兵可獲利潤元.

(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)與騎兵個數(shù)表示每天的利潤(元);

(2)怎么分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)選修4﹣2:矩陣與變換
設曲線2x2+2xy+y2=1在矩陣A= (a>0)對應的變換作用下得到的曲線為x2+y2=1.
(Ⅰ)求實數(shù)a,b的值.
(Ⅱ)求A2的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在區(qū)間D上的函數(shù)f(x),若存在閉區(qū)間[a,b]D和常數(shù)c,使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2D,當x2[a,b]時,f(x2)<c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平頂型”函數(shù).給出下列結(jié)論:

①“平頂型”函數(shù)在定義域內(nèi)有最大值;

②函數(shù)f(x)=x-|x-2|為R上的“平頂型”函數(shù);

③函數(shù)f(x)=sin x-|sin x|為R上的“平頂型”函數(shù);

④當t時,函數(shù)f(x)=是區(qū)間[0,+∞)上的“平頂型”函數(shù).

其中正確的結(jié)論是________.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),的圖象在點處的切線與直線平行.

(1)求的值;

(2)若函數(shù),且在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,
(1)證明:A1C⊥平面BB1D1D;

(2)求平面OCB1與平面BB1D1D的夾角θ的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,使用紙板可以折疊粘貼制作一個形狀為正六棱柱形狀的花型鎖盒蓋的紙盒.

(1)求該紙盒的容積;
(2)如果有一張長為60cm,寬為40cm的矩形紙板,則利用這張紙板最多可以制作多少個這樣的紙盒(紙盒必須用一張紙板制成).

查看答案和解析>>

同步練習冊答案