【題目】有以下四個(gè)命題,其中正確的是( )

A. 由獨(dú)立性檢驗(yàn)可知,有的把握認(rèn)為物理成績(jī)與數(shù)學(xué)成績(jī)有關(guān),若某人數(shù)學(xué)成績(jī)優(yōu)秀,則他有的可能物理成績(jī)優(yōu)秀;

B. 兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于

C. 在線性回歸方程中,當(dāng)變量每增加一個(gè)單位時(shí),變量平均增加個(gè)單位

D. 線性回歸方程對(duì)應(yīng)的直線至少經(jīng)過樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn)

【答案】C

【解析】

對(duì)于A. 的把握認(rèn)為物理成績(jī)與數(shù)學(xué)成績(jī)有關(guān),是指“不出錯(cuò)的概率”,
不是“數(shù)學(xué)成績(jī)優(yōu)秀,物理成績(jī)就有的可能優(yōu)秀”,A錯(cuò)誤;

對(duì)于B,根據(jù)隨機(jī)變量的相關(guān)系數(shù)知,兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1,B錯(cuò)誤;

對(duì)于C.根據(jù)線性回歸方程的系數(shù) 知,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位,C正確;

對(duì)于D.線性回歸方程對(duì)應(yīng)的直線過樣本中心點(diǎn),不一定過樣本數(shù)據(jù)中的點(diǎn),故D錯(cuò)誤;

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,公差,且,成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)是首項(xiàng)為1,公比為的等比數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】供電部門對(duì)某社區(qū)位居民2017年12月份人均用電情況進(jìn)行統(tǒng)計(jì)后,按人均用電量分為, , , 五組,整理得到如下的頻率分布直方圖,則下列說法錯(cuò)誤的是

A. 月份人均用電量人數(shù)最多的一組有

B. 月份人均用電量不低于度的有

C. 月份人均用電量為

D. 在這位居民中任選位協(xié)助收費(fèi),選到的居民用電量在一組的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣4;坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,曲線C2的坐標(biāo)系方程是ρ=2,正方形ABCD的頂點(diǎn)都在C2上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2, ).
(1)求點(diǎn)A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C1上任意一點(diǎn),求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)的直線,拋物線相交于不同的兩點(diǎn).

(1)若,求直線的方程;

(2)若點(diǎn)在以為直徑的圓外部,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),軸正半軸為極軸)中,圓的方程為

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于點(diǎn),,若點(diǎn)的坐標(biāo)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,過橢圓C上一點(diǎn)P(2,1)作x軸的垂線,垂足為Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點(diǎn)Q的直線l交橢圓C于點(diǎn)A,B,且3+=,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1﹣an=2,等比數(shù)列{bn}滿足b1=a1 , b4=a4+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案